{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1 - Physics and Engineering" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1 - pg 11" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Percentage Error (percentage) = 4.0\n" ] } ], "source": [ "#calculate the percentage error\n", "#Given:\n", "l=9.3; # length in cm\n", "b=8.5;# breadth in cm\n", "h=5.4;# height in cm\n", "#calculations\n", "V= l*b*h; # Volume in cm**3\n", "delta_l = 0.1; delta_b = 0.1; delta_h = 0.1; # scale has a least count = 0.1 cm\n", "# absolute error \n", "delta_V = (b*h*delta_l + l*h*delta_b +l*b*delta_h); # in cm**3\n", "#relative error \n", "re = delta_V/V;\n", "p= re*100; # Evaluating percentage error\n", "#results\n", "print \"Percentage Error (percentage) = \",round(p,0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2 - pg 12" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Percentage error (percentage) = 2.86\n", "Result obtained differs from that in textbook, because delta_M walue is taken 0.1 g , instead of 0.2 g as mentioned in the problem statement.\n" ] } ], "source": [ "#calculate the percentage error\n", "#Given :\n", "M= 10.0; #weight in g\n", "V= 5.80;#volume in cm**3\n", "#calculations\n", "Rho = M/V; # Density in g/cm**3\n", "delta_M= 0.2 # apparatus has a least count of 0.2 g\n", "delta_V= 0.05# apparatus has a least count of 0.05 cm**3\n", "delta_Rho = (delta_M/V) +((M*delta_V)/V**2);# absolute error in g/cm**3\n", "re = delta_Rho/Rho ; #Evaluating Relative Error\n", "p = re*100;# Evaluating Percentage Error\n", "#results\n", "print \"Percentage error (percentage) = \",round(p,2)\n", "print'Result obtained differs from that in textbook, because delta_M walue is taken 0.1 g , instead of 0.2 g as mentioned in the problem statement.'\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3 - pg 16" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(a)Actual Value of c/r ranges between 5.9 - 6.6 and Percentage error = 5.3 percentage. \n", "(b)Actual Value of c/r ranges between 6.281 - 6.288 and Percentage error = 0.06 percentage.\n" ] } ], "source": [ "#calculate the Actual val of c/r ranges and percentage error\n", "#Given:\n", "#(a) \n", "import math\n", "lc = 0.1# least count in cm\n", "c = 6.9 #Circumference c in cm\n", "r= 1.1 # radius of circle in cm\n", "val =2*math.pi;\n", "# Circumference,c= 2*pi*r or c/r = 2*pi\n", "# Error in c/r is , delta(c/r)= [(c/r**2)+(1/r)](LC/2) , LC is Least Count .\n", "E= ((c/r**2)+(1./r))*(lc/2.);#Error in c/r is delta(c/r)\n", "ob = c/r; # Observed Value\n", "#Actual Value of c/r ranges between\n", "ac1 = ob-E;# Evaluating Minimum value for c/r \n", "ac2 = ob+E;# Evaluating Maximum value for c/r\n", "p = (E/ob)*100.; #Evaluating percentage error\n", "#results\n", "print \"(a)Actual Value of c/r ranges between\",round(ac1,1), \"-\",round(ac2,1),\" and Percentage error =\",round(p,1),\" percentage. \"\n", "#(b)\n", "lc1 = 0.001;#Now the least count is 0.001 cm\n", "c1 = 6.316;#Circumference in cm\n", "r1=1.005;#Circle radius in cm \n", "E1 =((c1/r1**2) + (1/r1))*(lc1/2); # Error in c/r is delta(c/r)\n", "ob1= c1/r1; #Observed Value\n", "p1=(E1/ob1)*100.;#Evaluating percentage error\n", "#Actual Value of c/r ranges between\n", "a1= ob1-E1;#Evaluating Minimum value for c/r\n", "a2= ob1+E1;#Evaluating Maximum value for c/r\n", "print \"(b)Actual Value of c/r ranges between\",round(a1,3),\"-\",round(a2,3),\"and Percentage error =\",round(p1,2),\" percentage.\"\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4 - pg 17" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(a) It is is 15.0 percentage lower than the experimental value.\n", "(b) It is 0.6 percentage higher than the experimental value.\n" ] } ], "source": [ "#calculate the percentage lower or higher than experimental value\n", "#Given\n", "import math\n", "# (a) Newton's Theory\n", "# v= (P/rho)**2 , P= Pressure , rho = density\n", "P = 76.; # 76 cm of Hg pressure\n", "V= 330. ; # velocity of sound in m/s\n", "rho = 0.001293; # density for dry air at 0 degrees celsius in g/cm**3\n", "g = 980.;#gravitational acceleration in cm/s**2\n", "#Density of mercury at room temperature is 13.6 g/cm**3 \n", "# 1 cm**2 = 1.0*10**-4 m**2\n", "#calculations\n", "v = math.sqrt(((P*13.6*g)/rho)*10**-4); # velocity of sound in m/s\n", "p= ((V-v)/V)*100; # % lower than the experimental value\n", "#results\n", "print \"(a) It is is\",round(p,0),\" percentage lower than the experimental value.\"\n", "\n", "# (b) Laplace's Theory \n", "# v= ((gama*P)/rho)**2., gamma = adiabatic index Thus,\n", "#Given :\n", "gama = 1.41 # Adiabatic index\n", "#Density of mercury at room temperature is 13.6 g/cm**3 \n", "# 1 cm**2 = 1.0*10**-4 m**2\n", "v1 = math.sqrt(((gama*P*13.6*g)/rho)*10**-4);# velocity of sound in m/s\n", "p1 = ((V-round(v1))/V)*100;# % higher than the eperimental value\n", "#results\n", "print \"(b) It is\",round(abs(p1),1),\"percentage higher than the experimental value.\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }