{ "metadata": { "name": "", "signature": "sha256:012ab8557afdcfdae2cdc3da17271647415fc17ab95dd187f4df0903472edf45" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter - 7 : Cathode Ray Oscilloscopes" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.1 - Page No : 244" ] }, { "cell_type": "code", "collapsed": false, "input": [ "l=2.5 # in cm\n", "l=l*10**-2 # in meter\n", "d=.5 # in cm\n", "d=d*10**-2 # in meter\n", "S= 20 # in cm\n", "S= S*10**-2 # in meter\n", "Va= 2500 # in volts\n", "# Formula y = OC*AB/OB = (S*d/2)/(l/2)\n", "y = (S*d/2)/(l/2) # in meter\n", "print \"The value of deflection = %0.f cm\" %(y*10**2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of deflection = 4 cm\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.2 - Page No : 244" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "R_E1= 5.6 # in kohm\n", "C1= 0.2 # in micro F\n", "V_B1= 6.3 # in volt\n", "V_BE= 0.7 # in volt\n", "TL= 2.5 # trigger level for the Schmitt trigger (UTP,LTP) in volt\n", "del_V1= 2*TL # in volt\n", "I_C1= (V_B1-V_BE)/R_E1 # in mA\n", "print \"Charging current = %0.f mA\" %I_C1 \n", "toh= del_V1*C1/I_C1 # in ms\n", "print \"Time period = %0.f ms\" %toh" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Charging current = 1 mA\n", "Time period = 1 ms\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.3 - Page No : 255" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt \n", "#Given data\n", "L=10 # trace length in cm\n", "DS= 5 # deflection sensitivity in V/cm\n", "V_peakTOpeak= L*DS # in volt\n", "V_peak= V_peakTOpeak/2 # in volt\n", "RMS= V_peak/sqrt(2) # RMS value of unknown as voltage in volt\n", "print \"The value of AC voltage = %0.3f volts\" %RMS " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of AC voltage = 17.678 volts\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.4 - Page No : 255" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division \n", "#Given data\n", "Y= 2+1/2 # Positive Y-peaks in pattern\n", "X= 1/2+1/2 # Positive X-peaks in pattern\n", "f_h= 3# frequency of horizontal voltage signal in kHz\n", "f_yBYf_x= Y/X \n", "# frequency of vertical voltage signal= f_yBYf_x * f_h\n", "f_v= f_yBYf_x * f_h # frequency of vertical voltage signal in kHz\n", "print \"frequency of vertical voltage signal = %0.1f kHz\" %f_v " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "frequency of vertical voltage signal = 7.5 kHz\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.5 - Page No : 256" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "f_x= 1000 # in Hz\n", "Y= 2 # points of tangency to vertical line\n", "X= 5 # points of tangency to horizontal line\n", "f_y= f_x*X/Y # in Hz\n", "print \"Frequency of vertical input = %0.f Hz\" %f_y" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of vertical input = 2500 Hz\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.6 - Page No : 257" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "f=2000 # in Hz\n", "T=1/f # in sec\n", "D=0.2 \n", "PulseDuration= D*T # in sec\n", "print \"The value of pulse duration = %0.1f ms\" %(PulseDuration*10**3) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of pulse duration = 0.1 ms\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.7 - Page No : 258" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "vertical_attenuation= 0.5 # in V/Div\n", "TPD= 2 # time/Div control in micro sec\n", "P= 4*vertical_attenuation # peak-to-peak amplitude of the signal in V \n", "print \"Peak-to-Peak amplitude of the signal = %0.f V\" %P\n", "T= 4*TPD # in micro sec\n", "T=T*10**-6 # in sec\n", "f=1/T # in Hz\n", "print \"The value of frequency = %0.f kHz\" %(f*10**-3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Peak-to-Peak amplitude of the signal = 2 V\n", "The value of frequency = 125 kHz\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.8 - Page No : 261" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import pi \n", "#Given data\n", "C_1N= 36 # in pF\n", "C_2= 150 # in pF\n", "R_1N= 1 # in M ohm\n", "R_1= 10 # in M ohm\n", "R_source= 500 # in ohm\n", "# R_1/(omega*(C_2+C_1N)) = R_1N/(omega*C_1)\n", "C_1= R_1N*(C_2+C_1N)/R_1 # in pF\n", "C_T= 1/(1/C_1+1/(C_2+C_1N)) # in pF\n", "C_T= C_T*10**-12 # in F\n", "f= 1/(2*pi*C_T*R_source) \n", "print \"Signal Frequency = %0.2f MHz\" %(f*10**-6)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Signal Frequency = 18.82 MHz\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.9 - Page No : 263" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "f= 20 # in MHz\n", "f=f*10**6 # in Hz\n", "toh= 1/f # in sec\n", "toh=toh*10**9 # in ns\n", "# For one cycle occupying 4 horizontal divisions,\n", "MTD= toh/4 # Minimum time/division in ns/division\n", "# Using the 10 times magnifier to provide MTD\n", "MTD_setting= 10*MTD # minimum time/division setting in ns/division\n", "print \"Minimum time/division setting = %0.f ns/division\" %MTD_setting" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum time/division setting = 125 ns/division\n" ] } ], "prompt_number": 12 } ], "metadata": {} } ] }