{
 "metadata": {
  "name": "",
  "signature": "sha256:012ab8557afdcfdae2cdc3da17271647415fc17ab95dd187f4df0903472edf45"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter - 7 : Cathode Ray Oscilloscopes"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example :  7.1 - Page No : 244"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "l=2.5 # in cm\n",
      "l=l*10**-2 # in meter\n",
      "d=.5 # in cm\n",
      "d=d*10**-2 # in meter\n",
      "S= 20 # in cm\n",
      "S= S*10**-2 # in meter\n",
      "Va= 2500 # in volts\n",
      "# Formula y = OC*AB/OB = (S*d/2)/(l/2)\n",
      "y = (S*d/2)/(l/2) # in meter\n",
      "print \"The value of deflection = %0.f cm\" %(y*10**2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of deflection = 4 cm\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example :  7.2 - Page No : 244"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " #Given data\n",
      "R_E1= 5.6 # in kohm\n",
      "C1= 0.2 # in micro F\n",
      "V_B1= 6.3 # in volt\n",
      "V_BE= 0.7 # in volt\n",
      "TL= 2.5 # trigger level for the Schmitt trigger (UTP,LTP) in volt\n",
      "del_V1= 2*TL # in volt\n",
      "I_C1= (V_B1-V_BE)/R_E1 # in mA\n",
      "print \"Charging current = %0.f mA\" %I_C1 \n",
      "toh= del_V1*C1/I_C1 # in ms\n",
      "print \"Time period = %0.f ms\" %toh"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Charging current = 1 mA\n",
        "Time period = 1 ms\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example :  7.3 - Page No : 255"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt \n",
      "#Given data\n",
      "L=10 # trace length in cm\n",
      "DS= 5 # deflection sensitivity in V/cm\n",
      "V_peakTOpeak= L*DS # in volt\n",
      "V_peak= V_peakTOpeak/2 # in volt\n",
      "RMS= V_peak/sqrt(2) # RMS value of unknown as voltage in volt\n",
      "print \"The value of AC voltage = %0.3f volts\" %RMS "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of AC voltage = 17.678 volts\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example :  7.4 - Page No : 255"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division \n",
      "#Given data\n",
      "Y= 2+1/2 # Positive Y-peaks in pattern\n",
      "X= 1/2+1/2 # Positive X-peaks in pattern\n",
      "f_h= 3# frequency of horizontal voltage signal in kHz\n",
      "f_yBYf_x= Y/X \n",
      "# frequency of vertical voltage signal= f_yBYf_x * f_h\n",
      "f_v= f_yBYf_x * f_h # frequency of vertical voltage signal in kHz\n",
      "print \"frequency of vertical voltage signal = %0.1f kHz\" %f_v "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "frequency of vertical voltage signal = 7.5 kHz\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example :  7.5 - Page No : 256"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " #Given data\n",
      "f_x= 1000 # in Hz\n",
      "Y= 2 # points of tangency to vertical line\n",
      "X= 5 # points of tangency to horizontal line\n",
      "f_y= f_x*X/Y # in Hz\n",
      "print \"Frequency of vertical input = %0.f Hz\" %f_y"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Frequency of vertical input = 2500 Hz\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example :  7.6 - Page No : 257"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " #Given data\n",
      "f=2000 # in Hz\n",
      "T=1/f # in sec\n",
      "D=0.2 \n",
      "PulseDuration= D*T # in sec\n",
      "print \"The value of pulse duration = %0.1f ms\" %(PulseDuration*10**3) "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of pulse duration = 0.1 ms\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example :  7.7 - Page No : 258"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " #Given data\n",
      "vertical_attenuation= 0.5 # in V/Div\n",
      "TPD= 2 # time/Div control in micro sec\n",
      "P= 4*vertical_attenuation # peak-to-peak amplitude of the signal in V \n",
      "print \"Peak-to-Peak amplitude of the signal = %0.f V\" %P\n",
      "T= 4*TPD # in micro sec\n",
      "T=T*10**-6 # in sec\n",
      "f=1/T # in Hz\n",
      "print \"The value of frequency = %0.f kHz\" %(f*10**-3)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Peak-to-Peak amplitude of the signal = 2 V\n",
        "The value of frequency = 125 kHz\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example :  7.8 - Page No : 261"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from numpy import pi \n",
      "#Given data\n",
      "C_1N= 36 # in pF\n",
      "C_2= 150 # in pF\n",
      "R_1N= 1 # in M ohm\n",
      "R_1= 10 # in M ohm\n",
      "R_source= 500 # in ohm\n",
      "# R_1/(omega*(C_2+C_1N)) = R_1N/(omega*C_1)\n",
      "C_1= R_1N*(C_2+C_1N)/R_1 # in pF\n",
      "C_T= 1/(1/C_1+1/(C_2+C_1N)) # in pF\n",
      "C_T= C_T*10**-12 # in F\n",
      "f= 1/(2*pi*C_T*R_source) \n",
      "print \"Signal Frequency = %0.2f MHz\" %(f*10**-6)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Signal Frequency = 18.82 MHz\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example :  7.9 - Page No : 263"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " #Given data\n",
      "f= 20 # in MHz\n",
      "f=f*10**6 # in Hz\n",
      "toh= 1/f # in sec\n",
      "toh=toh*10**9 # in ns\n",
      "# For one cycle occupying 4 horizontal divisions,\n",
      "MTD= toh/4 # Minimum time/division in ns/division\n",
      "# Using the 10 times magnifier to provide MTD\n",
      "MTD_setting= 10*MTD # minimum time/division setting in ns/division\n",
      "print \"Minimum time/division setting = %0.f ns/division\" %MTD_setting"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Minimum time/division setting = 125 ns/division\n"
       ]
      }
     ],
     "prompt_number": 12
    }
   ],
   "metadata": {}
  }
 ]
}