{ "metadata": { "name": "", "signature": "sha256:a93d445dad4ffd499630570fa7ced24b4b25ee06fcd5352ae47d0eb721a47db5" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER1 : WHAT MACHINES AND TRANSFORMERS HAVE IN COMMON" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E01 : Pg 16" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "horsepower=2.5 # rating of induction motor in horsepower at half load\n", "Vl=230. # terminal voltage of motor in volts\n", "Il=7. # load current of motor in amperes\n", "pf=0.8 # power factor of the machine\n", "Pin=sqrt(3.)*Vl*Il*pf # input power in watts\n", "print\"Pin=\",Pin,\"W\"# The answer may vary due to roundoff error\n", "Whp=746. # watts per hp\n", "Pout=horsepower*Whp # output power in watts\n", "print\"Pout=\",Pout,\"W\"\n", "print\"n=\",Pout/Pin# The answer may vary due to roundoff error # efficiency of the machine\n", "print\"Losses=Pin-Pout=\",Pin-Pout,\"W\"# The answer may vary due to roundoff error # losses in the machine in watts" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pin= 2230.88144015 W\n", "Pout= 1865.0 W\n", "n= 0.835992431707\n", "Losses=Pin-Pout= 365.881440149 W\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E02 : Pg 17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# the below exmaple is an extension of Ex1_1.sce\n", "from math import sqrt \n", "Vl=230. # terminal voltage of machine in volts\n", "Il=7. # current drawn by machine in amperes\n", "pf=0.8 # power factor of machine\n", "Pin=sqrt(3.)*Vl*Il*pf # from Ex1_1 # input power in watts\n", "Losses=365. # in watts\n", "Pout=Pin-Losses # output power in watts\n", "Whp=746. # watts per hp\n", "print\"n=1-(Losses/Input)=\",1.-(Losses/Pin) # The answer may vary due to roundoff error # efficiency of the machine\n", "print\"Pout=\",Pout,\"W\"# The answer may vary due to roundoff error\n", "print\"Pout=\",Pout/Whp,\"hp\"# The asnwer may vary due to roundoff error # output power in horsepower" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "n=1-(Losses/Input)= 0.836387540175\n", "Pout= 1865.88144015 W\n", "Pout= 2.50118155516 hp\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E03 : Pg 17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt,pi \n", "f=60. # frequency of voltage source in Hz\n", "x=1.9 # Steinmetz coefficient\n", "V=80. # applied sinusoidal voltage in volts\n", "t=100. # no of turns wound on a coil\n", "hc=500. # hysteresis coefficient \n", "w=2.*pi*f # angular frequency in rads/sec\n", "phimax=(sqrt(2.)*V)/(t*w)# maximum value of flux in the core in webers\n", "print\"phimax=\",phimax,\"Wb\"# the answer may vary due to roundoff error\n", "A1=0.0025 # cross-sectional area of core in metre square\n", "Bmax1=phimax/A1 # flux density in core A in tesla\n", "print\"Bmax=\",Bmax1,\"T\"# the answer may vary due to roundoff error\n", "lfe1=0.5 # mean flux path length of core A in meters\n", "VolA=A1*lfe1 # volume of core A in metre cube\n", "print\"VolA=\",VolA,\"metre cube\"\n", "# for core A\n", "Ph1=VolA*f*hc*(Bmax1**x) # hysteresis loss in core A in watts\n", "print\"Ph=\",Ph1,\"W\"# the answer may vary due to roundoff error\n", "# for core B\n", "A2=A1*3. # cross sectional area of core B in metre square\n", "lfe2=0.866 # mean flux path length of core B in metres\n", "Bmax2=phimax/A2 # flux density in core B in tesla\n", "VolB=A2*lfe2 # volume of core B in metre cubes\n", "Ph2=VolB*f*hc*(Bmax2**x) # hysteresis loss of core B in watts\n", "print\"Ph=\",Ph2,\"W\"# the answer may vary due to roundoff error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "phimax= 0.00300105438719 Wb\n", "Bmax= 1.20042175488 T\n", "VolA= 0.00125 metre cube\n", "Ph= 53.0597985532 W\n", "Ph= 34.1904136606 W\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E04 : Pg 18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "V1=240. # voltage applied to a winding of transformer(three phase) in volts\n", "f1=60. # initial applied frequency in Hz\n", "f2=30. # reduced frequency in Hz\n", "Phe1=400. # core loss in watts at f1 frequency\n", "Phe2=169. # core losses in watts at f2 frequency\n", "print\"V2=\",(f2*V1)/f1,\"V\"# voltage at 30 Hz frequency\n", "print\"Ph+e/f=Ch+Ce*f\"# equation for claculating hysteresis and eddy current loss coefficients\n", "#a=[1 f1;1 f2] # left hand side matix for the equation above\n", "#b=[Phe1/f1;Phe2/f2] # right hand side matrix for the equation above\n", "#c=inv(a)*b\n", "Ch=4.6#c(1,:)# hysteresis loss coefficient in W/Hz\n", "Ce=0.0344#c(2,:)# eddy current loss coefficient in W/(Hz*Hz)\n", "print\"Ph=\",Ch*f1,\"W\"# ans may vary due to roundoff error # hysteresis loss in watts at 60 Hz\n", "print\"Pe=\",round(Ce*f1*f1),\"W\"# ans may vary due to roundoff error # eddy current loss at 60 Hz in watts" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "V2= 120.0 V\n", "Ph+e/f=Ch+Ce*f\n", "Ph= 276.0 W\n", "Pe= 124.0 W\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E05 : Pg 20" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt \n", "Pk=75. # core loss of transfomer in watts\n", "R=0.048 # internal resistance in ohms\n", "V2=240.# secondary voltage in volts\n", "I2=sqrt(Pk/R)# secondary current in amperes\n", "print\"I2=\",round(I2),\"A\"# ans may vary due to roundoff error\n", "print\"|S|=V2*I2=\",round(V2*I2),\"VA\"# The answer in the textbook is wrong # output volt ampere of transformer" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "I2= 40.0 A\n", "|S|=V2*I2= 9487.0 VA\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E06 : Pg 22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "sfl=1746 # speed at full load in rev/min\n", "snl=1799.5 # speed at no load in rev/min\n", "print\"Voltage Regulation=\",round((snl-sfl)/sfl,5) # the ans may vary due to round of error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage Regulation= 0.03064\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E07 : Pg 22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "Vnl=27.3 # no load voltage in volts\n", "Vfl1=24. # full load voltage at power factor 1 in volts\n", "print\"(Vnl-Vfl/Vfl)=\",(Vnl-Vfl1)/Vfl1# ans may vary due to roundoff error\n", "Vfl2=22.1 # full load voltage at power factor 0.7 in volts\n", "print\"Voltage Regulation=\",round((Vnl-Vfl2)/Vfl1,4)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(Vnl-Vfl/Vfl)= 0.1375\n", "Voltage Regulation= 0.2167\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }