{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1 CRYSTAL STRUCTURES" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1_4 pgno:10" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a= 1.0\n", "r=a/2 = 0.5\n", "Volume of one atom ,v=((4∗%pi∗(rˆ3))/3)= 0.523598775598\n", "Total Volume of the cube ,V=aˆ3 = 1.0\n", "Fp(S.C)=(v∗100/V)= 52.3598775598\n" ] } ], "source": [ "#exa 1.4\n", "from math import pi\n", "a=1.\n", "print \"a= \",a # initializing value of lattice constant(a)=1.\n", "r=a/2.\n", "print \"r=a/2 = \",r # initializing value of radius of atom for simple cubic .\n", "v=((4*pi*(r**3))/3)\n", "print \"Volume of one atom ,v=((4∗%pi∗(rˆ3))/3)= \",v # calcuation . \n", "V=a**3\n", "print \"Total Volume of the cube ,V=aˆ3 = \",V # calcuation .\n", "Fp=(v*100/V)\n", "print \"Fp(S.C)=(v∗100/V)= \",Fp,# calculation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1_5 pgno:11" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a= 1.0\n", "Radius of the atoms,r=(sqrt(3)∗(aˆ2/4)) = 0.433012701892\n", "Volume of two atom,v=((4∗pi∗(rˆ3))/3)∗2 = 0.680174761588\n", "Total Volume of the cube ,V=aˆ3 = 1.0\n", "Fp(B.C.C)=(v∗100/V)= 68.0174761588 %\n" ] } ], "source": [ "#exa 1.5\n", "from math import sqrt\n", "a=1.\n", "print \"a= \",a # initializing value of lattice constant(a)=1.\n", "r=(sqrt(3)*(a**2/4))\n", "print \"Radius of the atoms,r=(sqrt(3)∗(aˆ2/4)) = \",r # initializing value of radius of atom for BCC.\n", "v=((4*pi*(r**3))/3)*2\n", "print \"Volume of two atom,v=((4∗pi∗(rˆ3))/3)∗2 = \",v # calcuation \n", "V=a**3\n", "print \"Total Volume of the cube ,V=aˆ3 = \",V # calcuation .\n", "Fp=(v*100/V)\n", "print \"Fp(B.C.C)=(v∗100/V)= \",Fp,\"%\" # calculation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 1_6 pgno:12" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a= 1\n", "Radius of the atom,r=(a/(2∗sqrt(2)))= 0.353553390593\n", "Volume of the four atom,v=(((4∗pi∗(rˆ3))/3)∗4)= 0.740480489693\n", "Total volume of the cube ,V=aˆ3= 2\n", "Fp(F.C.C)=(v∗100/V)= 37.0240244847 %\n" ] } ], "source": [ "#exa 1.6\n", "a=1\n", "print \"a= \",a # initializing value of lattice constant(a)=1.\n", "r=(a/(2*sqrt(2)))\n", "print \"Radius of the atom,r=(a/(2∗sqrt(2)))= \",r # initializing value of radius of atom for FCC .\n", "v=(((4*pi*(r**3))/3)*4)\n", "print \"Volume of the four atom,v=(((4∗pi∗(rˆ3))/3)∗4)= \",v # calcuation \n", "V=a^3\n", "print \"Total volume of the cube ,V=aˆ3= \",V # calcuation .\n", "Fp=(v*100/V)\n", "print \"Fp(F.C.C)=(v∗100/V)= \",Fp,\"%\" # calculation\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 1_8 pgno:14" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a= 1\n", "Radius of the atom , r=(sqrt (3)∗a/8))= 0.216506350946\n", "v=(((4∗pi∗(rˆ3))/3)∗8) = 0.340087380794\n", "V=aˆ3= 2\n", "Fp(Diamond)=(v∗100/V) = 17.0043690397 %\n" ] } ], "source": [ "#Exa 1.8 \n", "a=1\n", "print \"a= \",a # initializing value of lattice constant(a)=1.\n", "r=((sqrt(3)*a/8))\n", "print \"Radius of the atom , r=(sqrt (3)∗a/8))= \",r # initializing value of radius of atom for diamond .\n", "v=(((4*pi*(r**3))/3)*8)\n", "print \"v=(((4∗pi∗(rˆ3))/3)∗8) = \",v # calcuation .\n", "V=a^3\n", "print \"V=aˆ3= \",V # calcuation .\n", "Fp=(v*100/V)\n", "print \"Fp(Diamond)=(v∗100/V) = \",Fp,\"%\" # calculation\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 1_9 pgno:14" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a = 5e-08 cm\n", "Radius of the atom,r=(sqrt(3)∗(a/4))= 2.16506350946e-08\n", "Volume of the two atoms ,v=((4∗pi∗(rˆ3))/3)∗2= 8.50218451985e-23\n", "Total Volume of the cube ,V=aˆ3 = 1.25e-22\n", "Fp(B.C.C)=(v∗100/V) = 68.0174761588 %\n" ] } ], "source": [ "#exa 1.9\n", "a=5*10**-8\n", "print \"a = \",a,\" cm\" # initializing value of lattice constant .\n", "r=(sqrt(3)*(a/4))\n", "print \"Radius of the atom,r=(sqrt(3)∗(a/4))= \",r # initializing value of radius of atom for BCC.\n", "v=((4*pi*(r**3))/3)*2\n", "print \"Volume of the two atoms ,v=((4∗pi∗(rˆ3))/3)∗2= \",v # calcuation .\n", "V=a**3\n", "print \"Total Volume of the cube ,V=aˆ3 = \",V # calcuation .\n", "Fp=(v*100/V)\n", "print \"Fp(B.C.C)=(v∗100/V) = \",Fp,\"%\" # calculation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 1_10 pgno:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x intercept = 1\n", "y intercept = inf\n", "z intercept = inf\n", "miller indices ,h=(1/x )= [1]\n", "k=(1/y)= [0.0]\n", "l=(1/z) = [0.0]\n" ] } ], "source": [ "#exa 1.10\n", "x=1\n", "print \"x intercept = \",x # initializing value of x intercept .\n", "y=float('inf')\n", "print \"y intercept = \",y # initializing value of y intercept .\n", "z=float('inf')\n", "print \"z intercept = \",z # initializing value of z intercept .\n", "h=[1/x]\n", "print \"miller indices ,h=(1/x )= \",h # calculation\n", "k=[1/y]\n", "print \"k=(1/y)= \",k # calculation\n", "l=[1/z]\n", "print \"l=(1/z) = \",l # calculation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 1_11 pgno:15" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x intercept = inf\n", "y intercept = inf\n", "z intercept = 1\n", "miller indices ,h=[1/x] = [0.0]\n", "k=[1/y] = [0.0]\n", "l=[1/z] = [1]\n" ] } ], "source": [ "#exa 1.11\n", "x=float('inf')\n", "print \"x intercept = \",x # initializing of x intercept .\n", "y=float('inf') \n", "print\"y intercept = \",y # initializing of Y intercept .\n", "z=1\n", "print \"z intercept = \",z # initializing of Z intercept .\n", "h=[1/x]\n", "print \"miller indices ,h=[1/x] = \",h # calculation\n", "k=[1/y]\n", "print \"k=[1/y] = \",k # calculation \n", "l=[1/z]\n", "print \"l=[1/z] = \",l # calculation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 1_12 pgno: 16" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x intercept = inf\n", "y intercept = 1\n", "z intercept = inf\n", "miller indices ,h=[1/x] = [0.0]\n", "k=[1/y] = [1]\n", "l=[1/z] = [0.0]\n" ] } ], "source": [ "#exa 1.12\n", "x=float('inf') \n", "print \"x intercept = \",x # initializing of X intercept .\n", "y=1\n", "print \"y intercept = \",y # initializing of X intercept .\n", "z=float('inf') \n", "print \"z intercept = \",z # initializing of X intercept .\n", "h=[1/x]\n", "print \"miller indices ,h=[1/x] = \",h # calculation\n", "k=[1/y]\n", "print \"k=[1/y] = \",k # calculation \n", "l=[1/z]\n", "print \"l=[1/z] = \",l #calculation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 1_13 pgno:16" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x intercept = 1\n", "y intercept = 1\n", "z intercept = inf\n", "miller indices ,h=[1/x] = [1]\n", "k=[1/y] = [1]\n", "l=[1/z] = [0.0]\n" ] } ], "source": [ "#exa 1.13\n", "x=1\n", "print \"x intercept = \",x # initializing of X intercept .\n", "y=1\n", "print \"y intercept = \",y # initializing of X intercept .\n", "z=float('inf') \n", "print \"z intercept = \",z # initializing of X intercept .\n", "h=[1/x]\n", "print \"miller indices ,h=[1/x] = \",h # calculation\n", "k=[1/y]\n", "print \"k=[1/y] = \",k # calculation \n", "l=[1/z]\n", "print \"l=[1/z] = \",l #calculation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 1_14 pgno:17" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x intercept = inf\n", "y intercept = 1\n", "z intercept = 1\n", "miller indices ,h=[1/x] = [0.0]\n", "k=[1/y] = [1]\n", "l=[1/z] = [1]\n" ] } ], "source": [ "#exa 1.14\n", "x=float('inf') \n", "print \"x intercept = \",x # initializing of X intercept .\n", "y=1\n", "print \"y intercept = \",y # initializing of X intercept .\n", "z=1\n", "print \"z intercept = \",z # initializing of X intercept .\n", "h=[1/x]\n", "print \"miller indices ,h=[1/x] = \",h # calculation\n", "k=[1/y]\n", "print \"k=[1/y] = \",k # calculation \n", "l=[1/z]\n", "print \"l=[1/z] = \",l #calculation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 1_15 pgno:18" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x intercept = 2\n", "y intercept = 2\n", "z intercept = 2\n", "common factor of all the intercept= 2\n", "miller indices ,h=[c/x] = [1]\n", "k=[c/y] = [1]\n", "l=[c/z] = [1]\n" ] } ], "source": [ "x=2\n", "print \"x intercept = \",x # initializing of X intercept .\n", "y=2\n", "print \"y intercept = \",y # initializing of X intercept .\n", "z=2\n", "print \"z intercept = \",z # initializing of X intercept .\n", "c=2\n", "print \"common factor of all the intercept= \",c # initializing value of common factor of all the intercepts .\n", "h=[c/x]\n", "print \"miller indices ,h=[c/x] = \",h # calculation\n", "k=[c/y]\n", "print \"k=[c/y] = \",k # calculation \n", "l=[c/z]\n", "print \"l=[c/z] = \",l #calculation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 1_16 pgno: 18" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Wa = 28.1\n", "D = 2.33 ram/cmˆ3\n", "Na = 6.02e+23 atoms/mole\n", "na =(Na∗D)/(Wa)= 4.99167259786e+22 atoms/cmˆ3\n" ] } ], "source": [ "#exa 1.16\n", "Wa =28.1\n", "print \"Wa = \",Wa # initializing value of atomic weight .\n", "D=2.33\n", "print \"D = \",D,\"ram/cmˆ3\" # initializing value of density .\n", "Na=6.02*10**23\n", "print \"Na = \",Na,\"atoms/mole\" # initializing value of avagadro number .\n", "na =(Na*D)/(Wa)\n", "print \"na =(Na∗D)/(Wa)= \",na,\" atoms/cmˆ3\" # calculation\n", "# the value of na (number of atoms in 1 cmˆ3 of silicon ) , provided after calculation in the book is wrong." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 1_17 pgno: 18" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a= 5e-08 cm\n", "N= 2\n", "V=aˆ3 = 1.25e-22 cmˆ3\n", "na=(no.of atoms in unit cell/Volume of theunit cell) =(N/(V))= 1.6e+22\n" ] } ], "source": [ "#exa 1.17\n", "a=5*10**-8\n", "print \"a= \",a,\"cm\" # initializing value of lattice constant .\n", "N=2\n", "print \"N= \",N # initializing value of no. of atoms in unit cell .\n", "V=a**3\n", "print \"V=aˆ3 = \",V,\"cmˆ3\" # initializing value of total Volume of the unit cell.\n", "na =(N/(V))\n", "print \"na=(no.of atoms in unit cell/Volume of theunit cell) =(N/(V))= \",na # calculation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 1_18 pgno: 18" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a = 5.43e-08 cm\n", "N = 8\n", "Number of atom in the cmˆ3,ns =(N/(aˆ3))= 4.99678310227e+22\n" ] } ], "source": [ "#exa 1.18\n", "a=5.43*10**-8\n", "print \"a = \",a,\"cm\" # initializing value of lattice constant .\n", "N=8\n", "print \"N = \",N # initializing value of no. of atoms in a unit cell .\n", "ns =(N/(a**3))\n", "print \"Number of atom in the cmˆ3,ns =(N/(aˆ3))= \",ns # calculation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 1_19 pgno: 18" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a = 5.43e-08 cm\n", "Wa = 28.1\n", "Na = 6.02e+23\n", "ns = 50000000000000000000000 atoms/cmˆ3\n", "Density of silicon ,D =(ns∗Wa)/(Na)= 2.33388704319 gm/cmˆ2\n" ] } ], "source": [ "#exa 1.19\n", "a=5.43*10**-8\n", "print \"a = \",a,\"cm\" # initializing value of lattice constant .\n", "Wa =28.1\n", "print \"Wa = \",Wa # initializing value of atomic weight .\n", "Na=6.02*10**23\n", "print \"Na = \",Na # initializing value of avagdro number .\n", "ns =5*10**22\n", "print \"ns = \",ns,\"atoms/cmˆ3\" # initializing value of atoms/cmˆ3.\n", "D =(ns*Wa)/(Na)\n", "print \"Density of silicon ,D =(ns∗Wa)/(Na)= \",D,\" gm/cmˆ2\" # calculation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 1_20 pgno: 19" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a = 4.75e-08 cm\n", "N = 4\n", "na =(N/(aˆ3))= 3.73232249599e+22\n" ] } ], "source": [ "#exa 1.20\n", "a=4.75*10**-8\n", "print \"a = \",a,\"cm\" # initializing value of lattice constant .\n", "N=4\n", "print \"N = \",N # initializing value of number of atoms in the unit cell .\n", "na =(N/(a**3))\n", "print \"na =(N/(aˆ3))=\",na # calculation" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }