{ "metadata": { "name": "", "signature": "sha256:9d65d2e4b3b26b2a3e4a4d31118d76195de2fbfee6ec541d4c7103cd8e8236f5" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 01:Electromagnetics and Optics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1.6:pg-25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#To find refractive index of of the glass\n", "import math\n", "\n", "# Given data\n", "phi=0.7297; # Critical angle for glass-air interface\n", "n2=1; # Refractive index of air\n", "n1=n2/math.sin(phi); # Refractive index of glass\n", "\n", "# Displaying the result in command window\n", "print \"\\n Refractive index of the glass = \",round(n1,1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Refractive index of the glass = 1.5\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1.7:pg-25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#To calculate a)the speed of light b) The wavelenght in medium c) The wavenumber in medium\n", "import math\n", "\n", "\n", "#a)The speed of light\n", "c=3*10**8; #Speed of light in free space (m/s)\n", "n=1.45; #Given refractive index of dielectric medium\n", "v=(c/n); #Speed of light in medium (in m/s)\n", "\n", "#Displaying the result in command window\n", "print\" \\nSpeed of light in medium =\",round(v*10**-8,3),\" X 10^8 m/s',\"\n", "\n", "#b) The wavelenght in medium \n", "f=190*10**12; #Given operating frequency of laser\n", "lambdam=(v/f); #Wavelenght in medium \n", "\n", "#Displaying the result in command window\n", "print\" \\nWavelenght of laser in medium =\",round(lambdam*10**(6),4),\" micrometer\"\n", "\n", "#c) The wavenumber in medium\n", "k=(2*math.pi)/lambdam; #Wavenumber in medium\n", "\n", "#Displaying the result in command window\n", "print \"\\nWavenumber in medium =\",round(k*10**-6,2),\" X 10^6 m^-1\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " \n", "Speed of light in medium = 2.069 X 10^8 m/s',\n", " \n", "Wavelenght of laser in medium = 1.0889 micrometer\n", "\n", "Wavenumber in medium = 5.77 X 10^6 m^-1\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1.8:pg-26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# To calculate a)magnitude of the wave vector of the refracted wave b)x-component and z-component of the wave vector\n", "\n", "import math\n", "#Given data\n", "n1=1; # Refractive index of air\n", "n2=1.45; # Refractive index of slap\n", "theta1=math.pi/3; # Angle of incidence\n", "lambdam=1.0889*10**(-6); # Wavelength in medium\n", "theta2=math.asin(math.sin(theta1)/n2); # Angle of refraction\n", "\n", "# a)To calculate magnitude of the wave vector of the refracted wave\n", "k=((2*math.pi)/lambdam); # Wavenumber\n", "\n", "# Displaying the result in command window\n", "print\" Magnitude of the wave vector of the refracted wave is same as wave number =\",round(k*10**(-6),2),\" X 10^6 m^-1\"\n", "\n", "# b)To calculate x-component and z-component of the wave vector\n", "kx=k*math.sin(theta2); # x-component of the wave vector\n", "kz=k*math.cos(theta2); # z-component of the wave vector\n", "\n", "# Displaying the result in command window\n", "print\"\\n z-component of the wave vector =\",round(kz*10**(-6),2),\" X 10^6 m**-1\"\n", "print\"\\n x-component of the wave vector = \",round(kx*10**(-6),2),\" X 10^6 m**-1\"\n", "# The answer is varrying due to round-off error \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Magnitude of the wave vector of the refracted wave is same as wave number = 5.77 X 10^6 m^-1\n", "\n", " z-component of the wave vector = 4.63 X 10^6 m**-1\n", "\n", " x-component of the wave vector = 3.45 X 10^6 m**-1\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1.9:pg-30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To find length of the medium\n", "import math\n", "\n", "\n", "bandwidth=100*10**9; #Bandwidth of optical signal\n", "w=2*math.pi*bandwidth; #Bandwidth of optical signal in rad/s\n", "T=3.14*10**(-12); #Delay between minimum and maximum frequency component\n", "beta2=10*(10**(-12))**2/10.0**3; #Group velocity dispersion parameter in s^2/km\n", "L=T/(beta2*w); #Length of the medium\n", "\n", "# Displaying the result in command window\n", "print\" Length of the medium =\",round(L),\" m\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Length of the medium = 500.0 m\n" ] } ], "prompt_number": 15 } ], "metadata": {} } ] }