{ "metadata": { "name": "", "signature": "sha256:e3537477beffef32716056a02b1119855be97d741374cf7c8e1075a3a804210f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Ch-2, Optical Fibers & its types" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 2.1 ; page 146" ] }, { "cell_type": "code", "collapsed": true, "input": [ "from __future__ import division\n", "#Given data :\n", "n1=1.40 #refractive index\n", "delta=1 #relative refractive index difference in %\n", "#Formula : n2/n1=1-delta\n", "n2=n1*(1-delta/100) #refractive index(unitless)\n", "print \"Refractive index of cladding is\",n2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Refractive index of cladding is 1.386\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 2.2 ; page 149" ] }, { "cell_type": "code", "collapsed": true, "input": [ "from __future__ import division\n", "from numpy import sin, arcsin, pi\n", "#Given data :\n", "fi_o=22 #in Degree\n", "delta=3 #relative refractive index difference in %\n", "#Part (a) :\n", "#Formula : NA=sin(fi_o).....(max)\n", "NA=sin(fi_o*pi/180) #Numerical Aperture(Unitless)\n", "print \"Numerical Aperture : \",round(NA,2)\n", "#Part (b) :\n", "#Formula : n2/n1=1-delta\n", "#Let say, n2/n1=n2byn1\n", "n2byn1=(1-delta/100) #refractive index(unitless)\n", "#Formula : sin(fi_C)=n2/n1 \n", "fi_c=arcsin(n2byn1) #in degree\n", "print \"Critical Angle at core cladding interface is\",round(fi_c,2),\"Degree\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Numerical Aperture : 0.37\n", "Critical Angle at core cladding interface is 1.33 Degree\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 2.3; page 156" ] }, { "cell_type": "code", "collapsed": true, "input": [ "from __future__ import division\n", "from numpy import sqrt\n", "#Given data :\n", "delta=0.45 #relative refractive index difference in %\n", "fi_o=0.115 #in Radian\n", "c=3*10**8 #speed of light in m/s\n", "#Formula : NA=sin(fi_o).....(max)\n", "NA=sin(fi_o) #Numerical Aperture(Unitless)\n", "#Formula : NA=n1*sqrt(2*delta)\n", "n1=NA/sqrt(2*delta/100) #unitless\n", "#Formula : n1=c/v \n", "v=c/n1 #in m/s\n", "print \"Speed of light in fibre core is \",round(v,2),\" m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed of light in fibre core is 248028935.21 m/s\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 2.4; page 157" ] }, { "cell_type": "code", "collapsed": true, "input": [ "from __future__ import division\n", "from numpy import sqrt, pi\n", "#Given data :\n", "n1=1.5 #Unitless\n", "delta=1 #relative refractive index difference in %\n", "lamda=1.3 #in um\n", "N=1100 #No. of modes\n", "#Formula : v=2*%pi*a*n1*NA/lambda \n", "#NA=sqrt(2*delta)\n", "#v=sqrt(2*N)\n", "a=(sqrt(2*N)*lamda)/(2*pi*n1*sqrt(2*delta/100)) #Normalized frequency\n", "d=2*a # um\n", "print \"Diameter of the fiber core is\",round(d,2),\"um\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Diameter of the fiber core is 91.5 um\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 2.5; page 159" ] }, { "cell_type": "code", "collapsed": true, "input": [ "from __future__ import division\n", "from numpy import sin, pi\n", "#Given data :\n", "\n", "n1=1.52 #unitless\n", "fi_o=8 #in Degree\n", "#Formula : sin(fi_o)=n1*sqrt(2*delta)\n", "delta=(sin(fi_o*pi/180)/n1)**2/2 #Relative refractive index\n", "delta*=100 # in %\n", "print \"The value of relative refractive index difference is \",round(delta,2),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of relative refractive index difference is 0.42 %\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 2.6; page 162" ] }, { "cell_type": "code", "collapsed": true, "input": [ "from __future__ import division\n", "from numpy import pi, sqrt\n", "#Given data :\n", "N=700 #No. of modes\n", "d=30 #in um\n", "a=d/2 #in um\n", "NA=0.62 #Numerical Aperture\n", "#Formula : v=2*sqrt(N) and v=2*%pi*a*NA/lambda\n", "lamda=2*pi*a*NA/(2*sqrt(N)) #in um\n", "print \"Wavelength of light propagating in fibre is\",round(lamda,2),\" micro meter\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of light propagating in fibre is 1.1 micro meter\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 2.7;page 165" ] }, { "cell_type": "code", "collapsed": true, "input": [ "from __future__ import division\n", "from numpy import pi, sqrt\n", "#Given data :\n", "n1=1.5 #unitless\n", "alfa=2 #characteristic index profile\n", "d=40 #in um\n", "a=d/2 #in um\n", "#Part (a) :\n", "lamda=1.3 #in um\n", "delta=1 \n", "#Formula : v=2*%pi*a*NA/lambda=2*%pi*a*(n1*sqrt(2*delta))/lambda\n", "v=2*pi*a*(n1*sqrt(2*delta/100))/lamda #Unitless\n", "print \"Normalized Frequency for single mode transmission : \",round(v,2) \n", "#Part (b) :\n", "#Formula : N=(alfa/alfa+2)*(v**2/2)\n", "N=(alfa/(alfa+2))*(v**2/2) #No. of guided modes\n", "print \"No. of guided modes propagating in the fibre is %d\" %N" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Normalized Frequency for single mode transmission : 20.51\n", "No. of guided modes propagating in the fibre is 105" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] } ], "prompt_number": 20 } ], "metadata": {} } ] }