{ "metadata": { "name": "", "signature": "sha256:941e56f6ccff5ba339ab866b08ad29bc1dd7198143616d650879efd5b419c50b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter4 - Antenna Arrays" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 4.9.1 : page-116" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Given Data\n", "le=100.0 #m\n", "Irms=450.0 #A\n", "f=40000.0 #Hz\n", "c=3*10**8 #m/s (Speed of light)\n", "l=c/f #wavelenght in m\n", "P=160*math.pi**2*(le/l)**2*Irms**2 #mW\n", "Rr=160*math.pi**2*(le/l)**2 #\u03a9\n", "P*=10**-3 #W\n", "print \"Power radiated is %0.2f W \" %P\n", "print \"Radiation resistance is %0.2f \u03a9\" %Rr" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power radiated is 56.85 W \n", "Radiation resistance is 0.28 \u03a9\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 4.9.5 : page-119" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Given Data\n", "L=1.0 #m(Length of element)\n", "f=10.0 #MHz(Operating frequency)\n", "c=3*10**8 #m/s##Speed of light\n", "l=c/(f*10**6) #m(Wavelength)\n", "Rr=80*math.pi**2*(L/l)**2 #\u03a9(Radiation resistance)\n", "print \"Radiation resistance is %0.2f \u03a9\" %Rr" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radiation resistance is 0.88 \u03a9\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 4.9.4 : page-126" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Data given\n", "#l=lambda/8\n", "lBYlambda=1.0/8 #(length/Wavelength)\n", "Rr=80*math.pi**2*(lBYlambda)**2 #\u03a9(Radiation resistance)\n", "print \"Radiation resistance is %0.2f \u03a9\" % Rr" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radiation resistance is 12.34 \u03a9\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 4.9.3 : page-129" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Data given\n", "le=10.0 #m(effective length)\n", "Rl=1.5 #\u03a9(resistance)\n", "Irms=450.0 #A(rms current)\n", "c=3*10**8 #m/s##Speed of light\n", "l=c/(f*10**3) #m(Wavelength)\n", "P=160*math.pi**2*(le/l)**2*Irms**2 #kW(Power)\n", "P=P*1000 #W(Power)\n", "Rr=160*math.pi**2*(le/l)**2 #\u03a9(Radiation resistance)\n", "Eta=Rr/(Rr+Rl)*100 #%(Efficiency)\n", "print \"Efficiency of antenna is %0.2f %%\" %Eta" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Efficiency of antenna is 0.01 %\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 4.6.1 : page-132" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Data Given \n", "l=1 #m\n", "Prad=4 #W\n", "f=1.5 #MHz\n", "c=3*10**8 #m/s##Speed of light\n", "l=c/(f*10**6) #m\n", "#here l/lambda<1/50 tells us it is a Hertzian monopole antenna\n", "h=1 #m\n", "Rr=40*math.pi**2*(h/l)**2 #m\u03a9\n", "Io=(2*Prad/Rr)**1.0/2 #A\n", "print \"Current required is %0.2f A \"% Io" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current required is 405.28 A \n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 4.5.1 : page-136" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Data given\n", "f=500.0 #MHz(Operating Frequency)\n", "Do=1.643 #for half wave dipole\n", "c=3*10**8 #m/s##Speed of light\n", "l=c/(f*10**6) #m(Wavelength)\n", "Aem=l**2/(4*math.pi)*Do #m\u00b2(Effective area)\n", "print \"Effective area is %0.2f m\u00b2\" %Aem" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Effective area is 0.05 m\u00b2\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 4.9.2 : page-139" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# Data given\n", "le=61.4 #m\n", "Irms=50 #A\n", "l=625 #m\n", "P=160*math.pi**2*(le/l)**2*Irms**2 #kW\n", "Rr=160*math.pi**2*(le/l)**2 #\u03a9\n", "P*=10**-3 #kW\n", "print \"Power radiated is %0.2f kW\" %P\n", "print \"Radiation resistance is %0.2f \u03a9\"% Rr" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power radiated is 38.10 kW\n", "Radiation resistance is 15.24 \u03a9\n" ] } ], "prompt_number": 37 } ], "metadata": {} } ] }