{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1: Light" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.1, Page Number 10" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Brewsters Angle of the Material is 56.31 Degrees\n" ] } ], "source": [ "import math\n", "\n", "n2=1.5 #Given Refractive Index of Glass in Air\n", "n1=1 #Given Refractive Index of Air\n", "\n", "theta=0 #Brewster's Angle\n", "#From Equation 1.13 (Brewsters angle= Tan Inverse (n2/n1))\n", "theta=math.degrees(math.atan(1.5))\n", "print \"The Brewsters Angle of the Material is \"+str(round(theta,2))+\" Degrees\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.2, Page Number 13" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "In Coherant Sources The Maximum Irradiance is 16I\n", "In Incoherant Sources The Maximum Irradiance is 4I\n" ] } ], "source": [ "n=4 #Total Number of Sources\n", "\n", "#For Coherant Sources\n", "print \"In Coherant Sources The Maximum Irradiance is \"+str(n*n)+\"I\" #Where I is the Irradiance at any point\n", "#For Incoherant Sources\n", "print \"In Incoherant Sources The Maximum Irradiance is \"+str(n)+\"I\" " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.3, Page Number 23" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(A)The Minimum Seperation Between the Sources is 0.0025 m\n", "(B)The Minimum Wavelength Difference which may be resolved is 2.08333333333e-11 m\n" ] } ], "source": [ "D=0.1 #Diameter of the Objective Lens\n", "d1=500 #Distance from the source\n", "l =0.000000500 #Wavelength Provided\n", "p=1 #First Order\n", "N=40*600 #The diffraction grating is 40 mm wide and has 600 lines/mm\n", "\n", "#From Equation 1.29 we Have\n", "Smin=(d1*l)/D #Where Smin is the minimum Seperation of the Sources\n", "print \"(A)The Minimum Seperation Between the Sources is \"+str(Smin)+\" m\"\n", "\n", "#We know that Chromatic resolving power is given by l/dl where dl is the Minimum Wavelength Difference\n", "#From Equation l/dl=p*N\n", "dl=l/(N*p)\n", "\n", "print \"(B)The Minimum Wavelength Difference which may be resolved is \"+str(dl)+\" m\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 1.4, Page Number 29" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Total Power Radiated from the Source is 6.3504 W\n" ] } ], "source": [ "em=0.7 #Emissivity Of the Surface\n", "T=2000 #Temperature in Kelvin\n", "A=0.00001 #Area in Meter Square\n", "S=5.67*(10**-8) #Stefan-Boltzmann Constant\n", "\n", "W=S*A*em*(T**4) #Where W is the total power radiated\n", "\n", "print \"The Total Power Radiated from the Source is \"+str(W)+\" W\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 1.5, Page Number 31" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Ionization Energy required to excite the electron from ground to Infinity 13.66 eV\n" ] } ], "source": [ "Z=1 #Atomic Number of Hydrogen\n", "m=9.1*(10**-31) #Mass of a Electron\n", "e=1.6*(10**-19) #Charge Of a Electron\n", "p=6.6*(10**-34) #Plancks Constant\n", "e1=8.85*(10**-12)#Permittivity of Free Space\n", "#From Equation 1.43\n", "E=(m*(Z**2)*(e**4))/(8*(p**2)*(e1**2)) #Where E is the Ionization Energy\n", "E2=E/e #Converting in Electron Volts\n", "E2=round(E2,2)\n", "\n", "print \"The Ionization Energy required to excite the electron from ground to Infinity \"+str(E2)+\" eV\"\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 1.6, Page Number 32" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Required Work function is 4.5375 eV\n" ] } ], "source": [ "e=1.6*(10**-19) #Charge Of a Electron\n", "h=6.6*(10**-34) #Plancks Constant\n", "vo=1.1*(10**15) #Threshold Frequency in Hertz\n", "\n", "# We Know h*vo=phi*e where phi is the required Work Function\n", "# We assume that the ejected electron has zero kinetic energy\n", "\n", "phi=h*vo/e\n", "print \"The Required Work function is \"+str(phi)+\" eV\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }