{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 1: Atomic Spectra" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 1, Page number 55" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "wavelength of emitted photon is 1.281 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "n1=3;\n", "n2=5; #states\n", "RH=1.0977*10**7;\n", "\n", "#Calculations\n", "newbar=RH*((1/n1**2)-(1/n2**2));\n", "lamda=10**6/newbar; #wavelength of emitted photon(angstrom)\n", "\n", "#Result\n", "print \"wavelength of emitted photon is\",round(lamda,3),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 2, Page number 56" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ratio of principal quantum number of two orbits is 14 / 11\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "E1=1.21;\n", "E2=1.96; #energy of two orbits(eV)\n", "\n", "#Calculations\n", "n1=math.sqrt(E2);\n", "n2=math.sqrt(E1); #ratio of principal quantum number of two orbits\n", "n1=n1*10;\n", "n2=n2*10; #multiply and divide the ratio by 10\n", "\n", "#Result\n", "print \"ratio of principal quantum number of two orbits is\",int(n1),\"/\",int(n2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 3, Page number 56" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "magnetic moment of proton is 5.041 *10**-27 Am**2\n", "answer in the book varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "e=1.6*10**-19; #charge(coulomb)\n", "mp=1.672*10**-27; #mass of electron(kg)\n", "h=6.62*10**-34; #planks constant(Js)\n", "\n", "#Calculations\n", "mewp=e*h/(4*math.pi*mp); #magnetic moment of proton(Am**2) \n", "\n", "#Result\n", "print \"magnetic moment of proton is\",round(mewp*10**27,3),\"*10**-27 Am**2\"\n", "print \"answer in the book varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 4, Page number 56" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "specific charge of electron is 1.7604 *10**11 coulomb/kg\n", "answer in the book varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "mewB=9.274*10**-24; #bohr magneton(amp m**2)\n", "h=6.62*10**-34; #planks constant(Js)\n", "\n", "#Calculations\n", "ebym=mewB*4*math.pi/h; #specific charge of electron(coulomb/kg) \n", "\n", "#Result\n", "print \"specific charge of electron is\",round(ebym/10**11,4),\"*10**11 coulomb/kg\"\n", "print \"answer in the book varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 5, Page number 57" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "wavelength separation is 0.3358 angstrom\n", "answer in the book varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "e=1.6*10**-19; #charge(coulomb)\n", "B=1; #flux density(Wb/m**2)\n", "lamda=6000*10**-10; #wavelength(m)\n", "m=9.1*10**-31; #mass(kg)\n", "c=3*10**8; #velocity of light(m/sec)\n", "\n", "#Calculations\n", "d_lamda=B*e*(lamda**2)/(4*math.pi*m*c); #wavelength separation(m)\n", "d_lamda=2*d_lamda*10**10; #wavelength separation(angstrom)\n", "\n", "#Result\n", "print \"wavelength separation is\",round(d_lamda,4),\"angstrom\"\n", "print \"answer in the book varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 6, Page number 57" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "energy of electron in 1st and 2nd orbit is -13.6 eV and -3.4 eV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "n1=1;\n", "n2=2; #states\n", "\n", "#Calculations\n", "E1=-13.6/n1**2; #energy of electron in 1st orbit(eV)\n", "E2=-13.6/n2**2; #energy of electron in 2nd orbit(eV)\n", "\n", "#Result\n", "print \"energy of electron in 1st and 2nd orbit is\",E1,\"eV and\",E2,\"eV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 8, Page number 58" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "linear momentum is 2.107 *10**-24 kg ms-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "lamda=0.5*10**-10; #radius of 1st orbit(m)\n", "h=6.62*10**-34; #planks constant(Js)\n", "\n", "#Calculations\n", "L=h/(2*math.pi*lamda); #linear momentum(kg ms-1)\n", "\n", "#Result\n", "print \"linear momentum is\",round(L*10**24,3),\"*10**-24 kg ms-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 9, Page number 58" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "state to which it is excited is 4\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "E1=-13.6; #energy of electron in 1st orbit(eV)\n", "E2=-12.75; #energy of electron in 2nd orbit(eV)\n", "\n", "#Calculations\n", "n=math.sqrt(-E1/(E2-E1)); #state to which it is excited\n", "\n", "#Result\n", "print \"state to which it is excited is\",int(n)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 10, Page number 59" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "bohr magneton is 9.262 *10**-24 coulomb Js kg-1\n", "answer in the book varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "e=1.6*10**-19; #charge(coulomb)\n", "m=9.1*10**-31; #mass of electron(kg)\n", "h=6.62*10**-34; #planks constant(Js)\n", "\n", "#Calculations\n", "mewB=e*h/(4*math.pi*m); #bohr magneton(coulomb Js kg-1) \n", "\n", "#Result\n", "print \"bohr magneton is\",round(mewB*10**24,3),\"*10**-24 coulomb Js kg-1\"\n", "print \"answer in the book varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 11, Page number 59" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "component separation is 2.7983 *10**8 Hz\n", "answer in the book varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "e=1.6*10**-19; #charge(coulomb)\n", "m=9.1*10**-31; #mass of electron(kg)\n", "B=0.02; #magnetic field(T)\n", "\n", "#Calculations\n", "delta_new=e*B/(4*math.pi*m); #component separation(Hz)\n", "\n", "#Result\n", "print \"component separation is\",round(delta_new/10**8,4),\"*10**8 Hz\"\n", "print \"answer in the book varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 14, Page number 61" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "magnetic flux density is 2.14 Tesla\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "e=1.6*10**-19; #charge(coulomb)\n", "m=9.1*10**-31; #mass of electron(kg)\n", "lamda=10000*10**-10; #wavelength(m)\n", "c=3*10**8; #velocity of light(m/sec)\n", "d_lamda=1*10**-10; #wavelength separation(m)\n", "\n", "#Calculations\n", "B=d_lamda*4*math.pi*m*c/(e*lamda**2); #magnetic flux density(Tesla)\n", "\n", "#Result\n", "print \"magnetic flux density is\",round(B,2),\"Tesla\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 19, Page number 66" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "separation is 0.33 angstrom\n", "wavelength of three components is 4226 angstrom 4226.33 angstrom 4226.666 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "e=1.6*10**-19; #charge(coulomb)\n", "m=9.1*10**-31; #mass of electron(kg)\n", "lamda=4226; #wavelength(angstrom)\n", "c=3*10**8; #velocity of light(m/sec)\n", "B=4; #magnetic field(Wb/m**2)\n", "\n", "#Calculations\n", "dnew=B*e/(4*math.pi*m); \n", "dlamda=lamda**2*dnew*10**-10/c; #separation(angstrom)\n", "dlamda1=lamda+dlamda;\n", "dlamda2=dlamda1+dlamda; #wavelength of three components(Hz)\n", "\n", "#Result\n", "print \"separation is\",round(dlamda,2),\"angstrom\"\n", "print \"wavelength of three components is\",lamda,\"angstrom\",round(dlamda1,2),\"angstrom\",round(dlamda2,3),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 21, Page number 68" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of elements would be 110\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "n1=1;\n", "n2=2; \n", "n3=3;\n", "n4=4;\n", "n5=5;\n", "\n", "#Calculations\n", "e1=2*n1**2; #maximum number of electrons in 1st orbit\n", "e2=2*n2**2; #maximum number of electrons in 2nd orbit\n", "e3=2*n3**2; #maximum number of electrons in 3rd orbit\n", "e4=2*n4**2; #maximum number of electrons in 4th orbit\n", "e5=2*n5**2; #maximum number of electrons in 5th orbit\n", "e=e1+e2+e3+e4+e5; #number of elements\n", "\n", "#Result\n", "print \"number of elements would be\",e" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }