{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3: Elements of the Theory of Plasticity" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Example 3.1, True Stress and True Strain, Page No. 76" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Engineering Stress at maximum load = 99852.1 psi\n", "True Fracture Stress = 112785 psi\n", "True Strain at fracture = 0.344939\n", "Engineering strain at fracture = 0.411903\n" ] } ], "source": [ "from math import pi\n", "from math import log\n", "from math import exp\n", "\n", "#variable declaration\n", "D_i=0.505;\n", "L=2;\n", "P_max=20000;\n", "P_f=16000;\n", "D_f=0.425;\n", "\n", "#calculation\n", "E_St= P_max*4/(pi*D_i**2);\n", "T_fr_St= P_f*4/(pi*D_f**2);\n", "e_f=log(D_i**2/D_f**2);\n", "e=exp(e_f)-1;\n", "\n", "#result\n", "print('\\nEngineering Stress at maximum load = %g psi\\nTrue Fracture Stress = %g psi\\nTrue Strain at fracture = %g\\nEngineering strain at fracture = %g')%(E_St,T_fr_St,e_f,e);\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Example 3.2, Yielding Criteria for Ductile Metals, Page No. 78" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "from math import sqrt\n", "\n", "#variable declaration\n", "sigma00=500;\n", "sigma_z=-50;\n", "sigma_y=100;\n", "sigma_x=200;\n", "T_xy=30;\n", "T_yz=0;\n", "T_xz=0;\n", "\n", "#calculation\n", "sigma0=sqrt((sigma_x-sigma_y)**2+(sigma_y-sigma_z)**2+(sigma_z-sigma_x)**2+6*(T_xy**2+T_yz**2+T_xz**2))/sqrt(2);\n", "s=sigma00/sigma0;\n", "\n", "#result\n", "print('\\nSince the calculated value of sigma0 = %g MPa, which is less than the yield strength of the aluminium alloy\\nThus safety factor is = %g')%(sigma0,s);\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Example 3.3, Tresca Criterion, Page No. 81" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "#variable declaration\n", "sigma00=500;\n", "sigma_z=-50;\n", "sigma_y=100;\n", "sigma_x=200;\n", "T_xy=30;\n", "T_yz=0;\n", "T_xz=0;\n", "\n", "#calculation\n", "sigma0=sigma_x-sigma_z;\n", "s=sigma00/sigma0;\n", "\n", "#result\n", "print('\\nSince the calculated value of sigma0 = %g MPa, which is less than the yield strength of the aluminium alloy\\nThus safety factor is = %g')%(sigma0,s);\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Example 3.4, Levy-Mises Equation, Page No. 91" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Plastic Strain = 0.199532\n" ] } ], "source": [ "from math import sqrt\n", "\n", "#variable declaration\n", "r_t=20;\n", "p=1000;\n", "\n", "#calculation\n", "sigma1=p*r_t;\n", "sigma1=sigma1/1000; #conversion to ksi\n", "sigma=sqrt(3)*sigma1/2;\n", "e=(sigma/25)**(1/0.25);\n", "e1=sqrt(3)*e/2;\n", "\n", "#result\n", "print('\\nPlastic Strain = %g')%(e1);\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }