{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#Chapter 1: Definitions and Basic Relations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 1.1, Page No. 38" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Enthalpy = 301.500000 kJ/kg\n", " Internal Energy = 215.400000 kJ/kg\n", "\n", " Diameter = 46.824337 cm\n" ] } ], "source": [ "from math import pi;\n", "from math import sqrt;\n", "#variable declaration\n", "R=0.287; #in kJ.kg K\n", "c_p=1.005; #in kJ.kg K\n", "m=3; #in kg/s\n", "T=300; #in K\n", "p=1.5; #in bar\n", "c=10; #in m/s\n", "p=p*10**5; #converts bar into Pa\n", "\n", "#calculation\n", "c_v=c_p-R;\n", "h=c_p*T;\n", "u=c_v*T;\n", "rho=p/(R*T*1000);\n", "D=sqrt((4*m)/(pi*c*rho));\n", "D=D*100; #converts m into cm\n", "\n", "#result\n", "print('\\n Enthalpy = %f kJ/kg\\n Internal Energy = %f kJ/kg')%(h,u);\n", "print '\\n Diameter = %f cm' %(D);\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 1.2, Page No. 38" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Final Temperature = 382.397541 K\n", " Enthalpy Drop = 88.473301 kJ/kg\n", " Change in Internal Energy = 71.349436 kJ/kg\n" ] } ], "source": [ "#variable declaration\n", "R=0.189; #in kJ/kg K\n", "gamma_1=1.24; #no unit\n", "T1=473; #in K\n", "p1=3.0; #in bar\n", "p2=1.0; #in bar\n", "\n", "#calculation\n", "c_p=(gamma_1*R)/(gamma_1-1);\n", "c_v=c_p/gamma_1;\n", "ratio=(p2/p1)**((gamma_1-1)/gamma_1);\n", "T2=ratio*T1;\n", "h=c_p*(T1-T2);\n", "u=c_v*(T1-T2);\n", "\n", "#result\n", "print('\\n Final Temperature = %f K\\n Enthalpy Drop = %f kJ/kg\\n Change in Internal Energy = %f kJ/kg')%(T2,h,u);\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 1.3, Page No. 39" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Change in Entropy = 0.165932\n", "\n", "\n", "Note : There are computational problems in the book of this example\n" ] } ], "source": [ "#variable declaration\n", "from math import log;\n", "gamma_1=1.3; #no unit\n", "T1=650; #in K\n", "n=1.2; #no unit\n", "p1=10.0; #in bar\n", "p2=3.0; #in bar\n", "c_p=2.15; #in kJ/kg K\n", "\n", "#cslculation\n", "c_v=c_p/gamma_1;\n", "ratio_p=p2/p1;\n", "ratio_v=(1/ratio_p)**(1/n);\n", "s=c_v*log(ratio_p)+c_p*log(ratio_v);\n", "\n", "#result\n", "print('\\nChange in Entropy = %f')%(s);\n", "print('\\n\\nNote : There are computational problems in the book of this example')\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 1.4, Page No. 39" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Pressure at the exit of duct = 2.925336 bar\n", "\n", "\n", "Note : There are computational problems in the book of this example\n" ] } ], "source": [ "#variable declaration\n", "L=100; #in m\n", "R=287; #in kJ/kg K\n", "D=0.5; #in m\n", "T=315; #in K\n", "p=3.0; #in bar\n", "c=15; #in m/s\n", "f=0.025; #no unit\n", "\n", "#calculation\n", "rho=p/(R*T);\n", "delta_p=4*f*L*rho*c**2/(2*D)\n", "p2=p-delta_p;\n", "\n", "#result\n", "print('\\nPressure at the exit of duct = %f bar')%(p2);\n", "print('\\n\\nNote : There are computational problems in the book of this example')\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 1.5, Page No. 40" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Bulk Modulus of Elasticity = 31295.652174 bar\n", "\n", " More Accurate Value of Bulk Modulus of Elasticity = 29459.521175 bar\n" ] } ], "source": [ "#variable declaration\n", "p1=1; #in bar\n", "p2=3600; #in bar\n", "v1=1; #in m^3\n", "v2=0.885 #in m^3\n", "\n", "#calculation & result\n", "K_t=-v1*(p2-p1)/(v2-v1);\n", "print('\\n Bulk Modulus of Elasticity = %f bar')%(K_t);\n", "K_t=(p2-p1)/log(v1/v2);\n", "print('\\n More Accurate Value of Bulk Modulus of Elasticity = %f bar')%(K_t)\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 1.6, Page No. 41" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "At Z=10000m\n", "Temperature = 223.200000 K\n", "Pressure = 0.264259 bar\n", "Density = 0.412528 kg/m**3\n", "Viscosity = 0.0000148 kg/ms\n", "\n", "At Z=15000m\n", "Temperature = 216.500000 K\n", "Pressure = 0.120714 bar\n", "Density = 0.194276 kg/m**3\n", "Viscosity = 0.0000142 kg/ms\n" ] } ], "source": [ "#variable declaration\n", "from math import exp;\n", "p0=1.0133; #in bar\n", "#p0=p0*10**5; #conversion to Pa\n", "T0=288.2; # in K\n", "Tt=216.5; # in K\n", "u0=1.79*10**-5; #in kg/ms\n", "ut=1.42*10**-5; #in kg/ms\n", "pt=0.227; #in bar\n", "Z1=10000; #in m\n", "Z2=15000; #in m\n", "Zt=11000; #in m\n", "R=287; #in J/kg K\n", "a1=6.5/1000; #in deg C/m\n", "g=9.81; #in m/s**2\n", "\n", "#calculation\n", "rho0=p0/(R*T0);\n", "T=T0-a1*Z1;\n", "p=p0*(T/T0)**(g/(a1*R));\n", "rho=p*10**5/(R*T);\n", "u=u0*(T/T0)**0.75;\n", "p1=pt*exp(-g*(Z2-Zt)/(R*Tt));\n", "rho1=p1*10**5/(R*Tt);\n", "\n", "#result\n", "print('\\nAt Z=10000m\\nTemperature = %f K\\nPressure = %f bar\\nDensity = %f kg/m**3\\nViscosity = %.7f kg/ms\\n\\nAt Z=15000m\\nTemperature = %f K\\nPressure = %f bar\\nDensity = %f kg/m**3\\nViscosity = %.7f kg/ms')%(T,p,rho,u,Tt,p1,rho1,ut);\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }