{ "metadata": { "name": "", "signature": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Ch-6 Xrays" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6.1 : Wavelength of X-rays: Pg: 156" ] }, { "cell_type": "code", "collapsed": false, "input": [ "h = 6.6e-034; # Planck's constant, J-s\n", "V = 50000; # Potential difference, volts\n", "c = 3e+08; # Velocity of light, m/s\n", "e = 1.6e-019; # Charge of an electron, coulombs\n", "L_1 = h*c/(e*V); # wavelength of X-rays, m\n", "L = L_1/1e-010; # wavelength of X-rays, angstorm\n", "print \"\\nThe shortest wavelength of X-rays = %6.4f angstorm\" % L" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The shortest wavelength of X-rays = 0.2475 angstorm\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6.2 : Planck's constant: Pg: 156" ] }, { "cell_type": "code", "collapsed": false, "input": [ "L = 24.7e-012; # Wavelength of X-rays, m\n", "V = 50000; # Potential difference, volts\n", "c = 3e+08; # Velocity of light, m/s\n", "e = 1.6e-019; # Charge of an electron, coulombs\n", "# Since e*V = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n", "# solving for h\n", "h = e*V*L/c; # Planck's constant, Joule second\n", "print \"h = %3.1e Js \" %h" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "h = 6.6e-34 Js \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6.3 : Short wavelength limit : Pg: 156" ] }, { "cell_type": "code", "collapsed": false, "input": [ "V = 50000; # Potential difference, volts\n", "h = 6.624e-034; # Planck's constant, Js\n", "c = 3e+08; # Velocity of light, m/s\n", "e = 1.6e-019; # Charge of an electron, coulombs\n", "# Since e*V = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n", "# solving for L\n", "L = h*c/(e*V); # Short wavelength limit of X-ray, m\n", "print \"Short wavelength limit of X-ray = %6.4f angstorm\" %(L/1E-10)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Short wavelength limit of X-ray = 0.2484 angstorm\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6.4 : Wavelength limit of X-rays : Pg: 157" ] }, { "cell_type": "code", "collapsed": false, "input": [ "V = 20000; # Potential difference, volt\n", "h = 6.624e-034; # Planck's constant, Js\n", "c = 3e+08; # Velocity of light, m/s\n", "e = 1.6e-019; # Charge of an electron, coulombs\n", "# Since e*V = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n", "# solving for L\n", "L = h*c/(e*V); # Wavelength limit of X-rays, m\n", "print \"Short wavelength limit of X-ray = %6.4f angstorm\" % (L/1E-010);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Short wavelength limit of X-ray = 0.6210 angstorm\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6.5 : Minimum voltage of an X-ray tube : Pg: 157" ] }, { "cell_type": "code", "collapsed": false, "input": [ "h = 6.625e-034; # Planck's constant, Js\n", "c = 3e+08; # Velocity of light, m/s\n", "e = 1.6e-019; # Charge of an electron, coulombs\n", "L = 1e-010; # Wavelength of X-rays, m\n", "# Since e*V = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n", "# solving for V\n", "V = h*c/(L*e); # Potential difference, volts\n", "print \"The minimum voltage of an X-ray tube = %5.2f kV\"%(V/1e+03);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minimum voltage of an X-ray tube = 12.42 kV\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6.5 : Minimum voltage of an X-ray tube : Pg: 157" ] }, { "cell_type": "code", "collapsed": false, "input": [ "h = 6.625e-034; # Planck's constant, Js\n", "c = 3e+08; # Velocity of light, m/s\n", "e = 1.6e-019; # Charge of an electron, coulombs\n", "L = 1e-010; # Wavelength of X-rays, m\n", "# Since e*V = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n", "# solving for V\n", "V = h*c/(L*e); # Potential difference, volts\n", "print \"The minimum voltage of an X-ray tube = %5.2f kV\"%( V/1e+03)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minimum voltage of an X-ray tube = 12.42 kV\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6.6 : Minimum wavelength emitted by an X-ray tube : Pg: 157" ] }, { "cell_type": "code", "collapsed": false, "input": [ "h = 6.625e-034; # Planck's constant, Js\n", "c = 3e+08; # Velocity of light, m/s\n", "e = 1.6e-019; # Charge of an electron, coulombs\n", "V = 4.5e+04; # Accelerating potential of X-ray tube, volt\n", "# Since e*V = h*c/L_min; # Energy required by an electron to move through a potential barrier of one volt, joules\n", "# solving for L_min\n", "L_min = h*c/(V*e); # Minimum wavelength emitted by an X-ray tube, m\n", "print \"The minimum wavelength emitted by the X-ray tube = %5.3f angstrom\"%(L_min/1e-010);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minimum wavelength emitted by the X-ray tube = 0.276 angstrom\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6.7: Critical voltage for stimualted emission : Pg: 158" ] }, { "cell_type": "code", "collapsed": false, "input": [ "h = 6.625e-034; # Planck's constant, Js\n", "c = 3e+08; # Velocity of light, m/s\n", "e = 1.6e-019; # Charge of an electron, coulombs\n", "L_k = 0.178e-010; # Wavelength of k absorption egde of X-rays, m\n", "# Since e*V_critical = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n", "# solving for V_critical\n", "V_critical = h*c/(L_k*e); # Crtical voltage for stimulated enission, volt\n", "print \"The critical voltage for stimulated emission = %4.1f kV\"%(V_critical/1e+03);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The critical voltage for stimulated emission = 69.8 kV\n" ] } ], "prompt_number": 21 } ], "metadata": {} } ] }