{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 16 : Electrical Energy & Capacitance" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.1 Page No : 533" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of E = 4000.00 v/m\n" ] } ], "source": [ "v_bminusv_a=-12\n", "d=0.3*10**-2#in m\n", "E=-(v_bminusv_a)/d\n", "print \"The value of E = %0.2f v/m\"%E" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.2 Page No : 533" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "solution a\n", "Electric potential from A to B = -40000.00 V\n", "solution b\n", "Change in electric potential = -0.00 joules\n", "velocity = 2768514.16 m/s\n" ] } ], "source": [ "from math import sqrt\n", "print \"solution a\"\n", "E=8*10**4#in V/m\n", "d=0.5#in m\n", "delta_V=-E*d\n", "print \"Electric potential from A to B = %0.2f V\"%delta_V\n", "print \"solution b\"\n", "q=1.6*10**-19#in C\n", "delta_PE=q*delta_V\n", "print \"Change in electric potential = %0.2f joules\"%delta_PE\n", "m_p=1.67*10**-27#in kg\n", "vf=sqrt((2*-delta_PE)/m_p)\n", "print \"velocity = %0.2f m/s\"%vf" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.3 Page No: 534" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Solution a\n", "Magnitude of V1 = 112375.00 v\n", "Magnitude of V2 = -35960.00 v\n", "solution b\n", "Magnitude of Vp = 76415.00 v\n", "work done = 0.31 Joule\n" ] } ], "source": [ "k_e=8.99*10**9 #N.m**2/c**2\n", "q1=5*10**-6# in C\n", "q2=-2*10**-6#in C\n", "r1=0.4\n", "r2=0.5\n", "V1=(k_e*q1)/(r1)\n", "V2=(k_e*q2)/(r2)\n", "print \"Solution a\"\n", "print \"Magnitude of V1 = %0.2f v\"%V1\n", "print \"Magnitude of V2 = %0.2f v\"%V2\n", "print \"solution b\"\n", "vp=V1+V2\n", "print \"Magnitude of Vp = %0.2f v\"%vp\n", "q3=4*10**-6#in C\n", "w=vp*q3\n", "print \"work done = %0.2f Joule\"%w" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.4 Page No: 535" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Capacitance = 1.77e-12 farad\n" ] } ], "source": [ "e0=8.85*10**-12#in c2/N.m2\n", "A=2*10**-4#in m2\n", "d=1*10**-3#in m\n", "c=(e0*A)/d\n", "print \"Capacitance = %0.2e farad\"%c" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.5 Page No : 535" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "capacitance = 4.50e-05 farad\n", "voltage between battery = 2.16e-04 c\n" ] } ], "source": [ "c1=3*10**-6\n", "c2=6*10**-6\n", "c3=12*10**-6\n", "c4=24*10**-6\n", "delta_v=18\n", "c_eq=c1+c2+c3+c4\n", "print \"capacitance = %0.2e farad\"%c_eq\n", "q=delta_v*c3\n", "print \"voltage between battery = %0.2e c\"%q" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.6 Page No : 536" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "solution a\n", "capacitance = 1.60e-06 farad\n", "solution b\n", "voltage between battery = 2.88e-05 c\n" ] } ], "source": [ "c1=3*10**-6\n", "c2=6*10**-6\n", "c3=12*10**-6\n", "c4=24*10**-6\n", "delta_v=18\n", "print \"solution a\"\n", "c_eq=1/((1/c1)+(1/c2)+(1/c3)+(1/c4))\n", "print \"capacitance = %0.2e farad\"%c_eq\n", "q=delta_v*c_eq\n", "print \"solution b\"\n", "print \"voltage between battery = %0.2e c\"%q" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.7 Page No: 536" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "solution a\n", "capacitance = 2.00e-06 farad\n" ] } ], "source": [ "c1=4*10**-6\n", "c2=4*10**-6\n", "print \"solution a\"\n", "c_eq=1/((1/c1)+(1/c2))\n", "print \"capacitance = %0.2e farad\"%c_eq" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.8 Page No: 537" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "solution a\n", "Energy stored = 4671 volt\n", "solution b\n", "power = 240000 watt\n" ] } ], "source": [ "Energy=1.2*10**3#in J\n", "c=1.1*10**-4#in f\n", "delta_v=sqrt((2*Energy)/c)\n", "print \"solution a\"\n", "print \"Energy stored = %0.f volt\"%delta_v\n", "print \"solution b\"\n", "Energy_deliverd=600#in j\n", "delta_t=2.5*10**-3#in s\n", "p=(Energy_deliverd)/delta_t\n", "print \"power = %0.f watt\"%p" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.9 Page No: 538" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "solution a\n", "Capacitance = 1.96e-11 farad\n", "solution b\n", "Voltage = 16000.0 volt\n", "Maximum charge = 3.14e-07 columb\n" ] } ], "source": [ "k=3.7\n", "e0=8.85*10**-12#in c2/N.m2\n", "A=6*10**-4#in m2\n", "d=1*10**-3#in m\n", "c=(k*e0*A)/d\n", "print \"solution a\"\n", "print \"Capacitance = %0.2e farad\"%c\n", "print \"solution b\"\n", "E_max=16*10**6#in v/m\n", "delta_v_max=E_max*d\n", "print \"Voltage = %0.1f volt\"%delta_v_max\n", "Q_max=delta_v_max*c\n", "print \"Maximum charge = %0.2e columb\"%Q_max" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }