{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 5 General Case of Forces in a plane" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "##Example 5.2 Equations of equilibrium" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The reaction at P is 5656.85424949238 N\n", "The reaction at Q is 4000.0 N\n" ] } ], "source": [ "import math\n", "\n", "#Initialization of Variables\n", "W=2000 #N\n", "Lab=2 #m #length of the member from the vertical to the 1st load of 2000 N\n", "Lac=5 #m #length of the member from the vertical to the 2nd load of 2000 N\n", "Lpq=3.5 #m\n", "\n", "#Calculations\n", "Rq=((W*Lab)+(W*Lac))/Lpq #N #take moment abt. pt P\n", "Xp=Rq #N #sum Fx=0\n", "Yp=2*W #N #sum Fy=0\n", "Rp=math.sqrt(Xp**2+Yp**2) #N\n", "\n", "#Resuts\n", "print('The reaction at P is' ,Rp ,'N')\n", "print('The reaction at Q is ',Rq ,'N')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "##Example 5.3 Equations of equilibrium" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The reaction at A i.e Ra is [[ 120.27406887]] N\n", "The reaction at B i.e Rb is [[ 35.13703443]] N\n", "The required tension in the string is [[ 40.57275258]] N\n" ] } ], "source": [ "import math,numpy\n", "#Initilization of vaiables\n", "W=25 #N # self weight of the ladder\n", "M=75 #N # weight of the man standing o the ladder\n", "theta=63.43 #degree # angle which the ladder makes with the horizontal\n", "alpha=30 #degree # angle made by the string with the horizontal\n", "Loa=2 #m # spacing between the wall and the ladder\n", "Lob=4 #m #length from the horizontal to the top of the ladder touching the wall(vertical)\n", "\n", "#Calculations\n", "#Using matrix to solve the simultaneous eqn's 3 & 4\n", "A=numpy.matrix('2 -4; 1 -0.577')\n", "B=numpy.matrix('100;100')\n", "C=numpy.linalg.inv(A)*B\n", "\n", "#Results\n", "print('The reaction at A i.e Ra is ',C[0] ,'N')\n", "print('The reaction at B i.e Rb is ',C[1] ,'N')\n", "\n", "#Calculations\n", "T=C[1]/math.cos(math.radians(alpha)) #N # from (eqn 1)\n", "\n", "#Results\n", "print('The required tension in the string is ',T, 'N')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "##Example 5.4 Equations of Equilibrium" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The reaction at B i.e Rb is 25.0 N\n", "The horizontal reaction at A i.e Xa is 21.650635094610966 N\n", "The vertical reaction at A i.e Ya is 112.5 N\n" ] } ], "source": [ "import math\n", "#Initilization of variables\n", "W=100 #N\n", "theta=60 #degree angle made by the ladder with the horizontal\n", "alpha=30 #degree angle made by the ladder with the vertical wall\n", "Lob=4 #m length from the horizontal to the top of the ladder touching the wall(vertical)\n", "Lcd=2 #m length from the horizontal to the centre of the ladder where the man stands\n", "\n", "#Calculations\n", "Lab=Lob*(1/math.cos(math.radians(alpha))) #m length of the ladder\n", "Lad=Lcd*math.tan(math.radians(alpha)) #m\n", "Rb=(W*Lad)/Lab #N take moment at A\n", "Xa=Rb*math.sin(math.radians(theta)) #N From eq'n 1\n", "Ya=W+Rb*math.cos(math.radians(theta)) #N From eq'n 2\n", "\n", "#Results\n", "print('The reaction at B i.e Rb is ',Rb, 'N')\n", "print('The horizontal reaction at A i.e Xa is ',Xa, 'N')\n", "print('The vertical reaction at A i.e Ya is ',Ya,'N')\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "##Example 5.5 Equations of Equilibrium" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The horizontal reaction at A i.e Xa is 28.867513459481287 N\n", "The vertical reaction at A i.e Ya is 100 N\n", "The reaction at B i.e Rb is 28.867513459481287 N\n" ] } ], "source": [ "import math\n", "#Initilization of variables\n", "W=100 #N self weight of the man\n", "alpha=30 #degree angle made by the ladder with the wall\n", "Lob=4 #m length from the horizontal to the top of the ladder touching the wall(vertical)\n", "Lcd=2 #m\n", "\n", "#Calculations\n", "# using the equiblirium equations\n", "Ya=W #N From eq'n 2\n", "Lad=Lcd*math.tan(math.radians(alpha)) #m Lad is the distance fom pt A to the point where the line from the cg intersects the horizontal\n", "Rb=(W*Lad)/Lob #N Taking sum of moment abt A\n", "Xa=Rb #N From eq'n 1\n", "\n", "#Results\n", "print('The horizontal reaction at A i.e Xa is ',Xa, 'N')\n", "print('The vertical reaction at A i.e Ya is ',Ya,'N' )\n", "print('The reaction at B i.e Rb is ',Rb ,'N')\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "##Example 5.6 Equations of Equilibrium" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The horizontal reaction at A i.e Xa is 3.84 N\n", "The vertical reaction at A i.e Ya is 7.12 N\n", "Therefore the reaction at A i.e Ra is 8.089499366462674 N\n", "The reaction at D i.e Rd is 4.8 N\n" ] } ], "source": [ "import math\n", "#Initilization of variables\n", "d=0.09 #m diametre of the right circular cylinder\n", "h=0.12 #m height of the cyinder\n", "W=10 #N self weight of the bar\n", "l=0.24 #m length of the bar\n", "\n", "#Calculations\n", "theta=math.degrees(math.atan(h/d)) #angle which the bar makes with the horizontal\n", "Lad=math.sqrt(d**2+h**2) #m Lad is the length of the bar from point A to point B\n", "Rd=(W*h*(math.cos(theta*math.pi/180)))/Lad #N Taking moment at A\n", "Xa=Rd*(math.sin(theta*math.pi/180)) #N sum Fx=0.... From eq'n 1\n", "Ya=W-(Rd*(math.cos(theta*math.pi/180))) #N sum Fy=0..... From eq'n 2\n", "Ra=math.sqrt(Xa**2+Ya**2) #resultant of Xa & Ya\n", "\n", "#Results\n", "print('The horizontal reaction at A i.e Xa is ',Xa, 'N')\n", "print('The vertical reaction at A i.e Ya is ',Ya, 'N')\n", "print('Therefore the reaction at A i.e Ra is ',Ra,'N')\n", "print('The reaction at D i.e Rd is ',Rd,'N')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" }, "widgets": { "state": {}, "version": "1.1.2" } }, "nbformat": 4, "nbformat_minor": 0 }