{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Chapter 8 : Gravitation" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Example 8.1 , page : 185" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " The planet will take a longer time to traverse BAC than CPB\n" ] } ], "source": [ "# Importing module\n", "\n", "import math\n", "\n", "# Variable declaration\n", "\n", "mp=1 # For convenience,mass is assumed to be unity \n", "rp=1 # For convenience,sun-planet distance at perihelton is assumed to be unity \n", "vp=1 # For convenience,speed of the planet at perihelton is assumed to be unity \n", "ra=1 # For convenience,sun-planet distance at aphelton is assumed to be unity \n", "va=1 # For convenience,speed of the planet at aphelton is assumed to be unity \n", "Lp=mp*rp*vp # Angular momentum at perihelton\n", "La=mp*ra*va # Angular momentum at ahelton\n", "\n", "# Result\n", "\n", "# From angular momentum conservation, mp*rp*vp = mp*ra*va or vp/va = rp/ra\n", "# From Kepler’s second law, equal areas are swept in equal times\n", "print(\" The planet will take a longer time to traverse BAC than CPB\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.2 , page : 187 " ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(a) The force acting = [0.0, 2.5849394142282115e-26, 0.0] ≈ 0\n", "(b) The force acting = 2 Gm²\n" ] } ], "source": [ "# Importing module\n", "\n", "import math\n", "\n", "# Variable declaration\n", "\n", "G=6.67*pow(10,-11) # Gravitational constant\n", "m=1 # For convenience,mass is assumed to be unity \n", "x=30 # The angle between GC and the positive x-axis is 30° and so is the angle between GB and the negative x-axis\n", "y=math.radians(x) # The angle in radians\n", "a=math.cos(y)\n", "b=math.sin(y)\n", "v1=(0,1,0)\n", "v2=(-a,-b,0)\n", "v3=(a,-b,0)\n", "c=(2*G*pow(m,2))/1 # 2Gm²/1\n", "\n", "# Calculation\n", "\n", "#(a)\n", "F1=[y * c for y in v1] # F(GA)\n", "F2=[y * c for y in v2] # F(GB)\n", "F3=[y * c for y in v3] # F(GC)\n", "# From the principle of superposition and the law of vector addition, the resultant gravitational force FR on (2m) is given by\n", "Fa=[sum(x) for x in zip(F1,F2,F3)]\n", "\n", "#(b)\n", "# By symmetry the x-component of the force cancels out and the y-component survives\n", "Fb=4-2 # 4Gm² j - 2Gm² j\n", "\n", "# Result\n", "\n", "print(\"(a) The force acting =\",Fa,\"≈ 0\")\n", "print(\"(b) The force acting =\",Fb,\"Gm²\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.3 , page : 192 " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Potential energy of a system of four particles = -5.414213562373095 Gm²/l\n", "The gravitational potential at the centre of the square = -5.65685424949238 Gm²/l\n" ] } ], "source": [ "# Importing module\n", "\n", "import math\n", "\n", "# Variable declaration\n", "\n", "G=6.67*pow(10,-11) # Gravitational constant\n", "m=1 # For convenience,mass is assumed to be unity \n", "l=1 # For convenience,side of the square is assumed to be unity \n", "c=(G*pow(m,2))/l\n", "n=4 # Number of particles\n", "\n", "# Calculation\n", "\n", "d=math.sqrt(2)\n", "# If the side of a square is l then the diagonal distance is √2l\n", "# We have four mass pairs at distance l and two diagonal pairs at distance √2l \n", "# Since the Potential Energy of a system of four particles is -4Gm²/l) - 2Gm²/dl\n", "w=(-n-(2/d)) \n", "# If the side of a square is l then the diagonal distance from the centre to corner is \n", "# Since the Gravitational Potential at the centre of the square\n", "u=-n*(2/d)\n", "\n", "# Result\n", "\n", "print (\"Potential energy of a system of four particles =\",w,\"Gm²/l\")\n", "print(\"The gravitational potential at the centre of the square =\",u,\"Gm²/l\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.4 , page : 193 " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Minimum speed of the projectile to reach the surface of the second sphere = ( 0.6 GM/R ) ^(1/2)\n" ] } ], "source": [ "# Importing module\n", "\n", "import math\n", "\n", "# Variable declaration\n", "\n", "R=1 # For convenience,radii of both the spheres is assumed to be unity \n", "M=1 # For convenience,mass is assumed to be unity \n", "m1=M # Mass of the first sphere\n", "m2=6*M # Mass of the second sphere\n", "m=1 # Since the mass of the projectile is unknown,take it as unity\n", "d=6*R # Distance between the centres of both the spheres\n", "r=1 # The distance from the centre of first sphere to the neutral point N\n", "\n", "G=6.67*pow(10,-11) # Gravitational constant\n", "\n", "# Calculation\n", "\n", "# Since N is the neutral point; GMm/r² = 4GMm/(6R-r)² and we get\n", "r=2*R\n", "# The mechanical energy at the surface of M is; Et = m(v^2)/2 - GMm/R - 4GMm/5R\n", "# The mechanical energy at N is; En = -GMm/2R - 4GMm/4R\n", "# From the principle of conservation of mechanical energy; Et = En and we get\n", "v_sqr=2*((4/5)-(1/2))\n", "\n", "# Result\n", "\n", "print(\"Minimum speed of the projectile to reach the surface of the second sphere =\",\"(\",round(v_sqr,5),\"GM/R\",\")\",\"^(1/2)\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.5 , page : 195 " ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(i) Mass of Mars = 6.475139697520706e+23 kg\n", "(ii) Period of revolution of Mars = 684.0033777694376 days\n" ] } ], "source": [ "# Importing module\n", "\n", "import math\n", "\n", "# Variable declaration\n", "\n", "π=3.14 # Constant pi\n", "G=6.67*pow(10,-11) # Gravitational constant\n", "R=9.4*pow(10,3) # Orbital radius of Mars in km\n", "T=459*60\n", "Te=365 # Period of revolution of Earth\n", "r=1.52 # Ratio of Rms/Res, where Rms is the mars-sun distance and Res is the earth-sun distance. \n", "\n", "# Calculation\n", "\n", "# (i) \n", "R=R*pow(10,3)\n", "# Using Kepler's 3rd law:T²=4π²(R^3)/GMm\n", "Mm=(4*pow(π,2)*pow(R,3))/(G*pow(T,2))\n", "\n", "# (ii)\n", "# Using Kepler's 3rd law: Tm²/Te² = (Rms^3/Res^3)\n", "Tm=pow(r,(3/2))*365\n", "\n", "\n", "# Result\n", "\n", "print(\"(i) Mass of Mars =\",Mm,\"kg\")\n", "print(\"(ii) Period of revolution of Mars =\",Tm,\"days\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.6 , page : 195 " ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mass of the Earth = 5.967906881559221e+24 kg\n", "Mass of the Earth = 6.017752855396305e+24 kg\n" ] } ], "source": [ "# Importing module\n", "\n", "import math\n", "\n", "# Variable declaration\n", "\n", "g=9.81 # Acceleration due to gravity\n", "G=6.67*pow(10,-11) # Gravitational constant\n", "Re=6.37*pow(10,6) # Radius of Earth in m\n", "R=3.84*pow(10,8) # Distance of Moon from Earth in m\n", "T=27.3 # Period of revolution of Moon in days\n", "π=3.14 # Constant pi\n", "\n", "# Calculation\n", "\n", "# I Method\n", "# Using Newton's 2nd law of motion:g = F/m = GMe/Re²\n", "Me1=(g*pow(Re,2))/G\n", "\n", "# II Method\n", "# Using Kepler's 3rd law: T²= 4π²(R^3)/GMe\n", "T1=T*24*60*60\n", "Me2=(4*pow(π,2)*pow(R,3))/(G*pow(T1,2))\n", "\n", "#Result\n", "\n", "print(\"Mass of the Earth =\",Me1,\"kg\")\n", "print(\"Mass of the Earth =\",Me2,\"kg\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.7 , page : 195 " ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Period of revolution of Moon = 27.5 days\n" ] } ], "source": [ "# Importing module\n", "\n", "import math\n", "\n", "# Variable declaration\n", "\n", "k=pow(10,-13) # A constant = 4π² / GME\n", "Re=3.84*pow(10,5) # Distance of the Moon from the Earth in m\n", "\n", "# Calculation\n", "\n", "k=pow(10,-13)*(pow(1/(24*60*60),2))*(1/pow((1/1000),3))\n", "T2=k*pow(Re,3)\n", "T=math.sqrt(T2) # Period of revolution of Moon in days\n", "\n", "# Result\n", "\n", "print(\"Period of revolution of Moon =\",round(T,1),\"days\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.8 , page : 196 " ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Change in Kinetic Energy = 3124485000.0 J\n", "Change in Potential Energy = 6248970000.0 J\n" ] } ], "source": [ "# Importing module\n", "\n", "import math\n", "\n", "# Variable declaration\n", "\n", "m=400 # Mass of satellite in kg\n", "Re=6.37*pow(10,6) # Radius of Earth in m\n", "g=9.81 # Acceleration due to gravity\n", "\n", "# Calculation\n", "\n", "# Change in energy is E=Ef-Ei\n", "ΔE=(g*m*Re)/8 # Change in Total energy\n", "# Since Potential Energy is twice as the change in Total Energy (V = Vf - Vi)\n", "ΔV=2*ΔE # Change in Potential Energy in J\n", "\n", "# Result\n", "\n", "print(\"Change in Kinetic Energy =\",round(ΔE,4),\"J\")\n", "print(\"Change in Potential Energy =\",round(ΔV,4),\"J\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }