{ "metadata": { "name": "", "signature": "sha256:3404f51fc9045816d89b5507acdfe9797796d47a0805fc064b3ee38cacd900d7" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9 Chemical effects of current" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.1 Page no 285" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "m=1*10**-3 #kg\n", "I=2 #A\n", "z=3.3*10**-7 #kg/C\n", "\n", "#Calculation\n", "t=m/(z*I)\n", "\n", "#Result\n", "print\"Time required is\", round(t,1),\"s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time required is 1515.2 s\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.2 Page no 285" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "m=0.15*10**-3 #Kg\n", "z=3.3*10**-7 #Kg/C\n", "t=900 #S\n", "I1=0.6 #A\n", "\n", "#Calculation\n", "I=m/(z*t)\n", "I2=I-I1\n", "\n", "#Result\n", "print\"Correction required for the ammeter reading is\", round(I2,1),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Correction required for the ammeter reading is -0.1 A\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.3 Page no 285" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "t=0.002 #m\n", "A=72 #cm**2\n", "d=8.9 #g/cm**3\n", "z=33*10**-5 #g/C\n", "I=5 #A\n", "\n", "#Calculation\n", "V=t*A\n", "m=V*d\n", "t1=m/(z*I)\n", "\n", "#Result\n", "print\"Time required is\", round(t1,0),\"S\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time required is 777.0 S\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.4 Page no 286" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "m1=2 #g\n", "m2=1 #g\n", "t=1800 #s\n", "z1=1118*10**-6 \n", "z2=3294*10**-7 \n", "a=6\n", "\n", "#Calculation\n", "l1=m1/(z1*t)\n", "l2=m2/(z2*t)\n", "l=l1+l2\n", "p=l*a\n", "\n", "#Result\n", "print\"Power of the current is\",round(p,3),\"W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power of the current is 16.082 W\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.5 Page no 286" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "m1=0.403*10**-3 #Kg\n", "z1=1.12*10**-6\n", "z2=3.3*10**-7\n", "t=900 #s\n", "e=12 #V\n", "\n", "#Calculation\n", "m2=(m1*z2)/z1\n", "d=(e*m1)/z1\n", "\n", "#Result\n", "print\"(a) Mass of the copper deposited is\",round(m2*10**3,3),\"10**-3\"\n", "print\"(b) The energy supplied by the battery is\",round(d*10**-3,2),\"10**3\",\"J\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Mass of the copper deposited is 0.119 10**-3\n", "(b) The energy supplied by the battery is 4.32 10**3 J\n" ] } ], "prompt_number": 51 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.6 Page no 286" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "r=100 #ohm\n", "t=600 #s\n", "z=3.3*10**-7\n", "m=10**-4\n", "\n", "#Calculation\n", "I=m/(z*t)\n", "Q=I**2*r*t\n", "\n", "#Result\n", "print\"Heat produced in the resistance coil is\",round(Q,1),\"J\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat produced in the resistance coil is 15304.6 J\n" ] } ], "prompt_number": 64 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.7 Page no 286" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "a=1.008\n", "v=1\n", "m1=1.05*10**-8\n", "a1=63.54\n", "v1=2\n", "m2=3.29*10**-7\n", "a2=107.9\n", "v2=1\n", "m3=1.12*10**-6\n", "a3=55.85\n", "v3=3\n", "\n", "#Calculation\n", "#For water voltameter\n", "E=a/v\n", "s=m1/E\n", "\n", "#For copper voltameter\n", "E2=a1/v1\n", "s1=m2/E2\n", "\n", "#For silver voltameter\n", "E3=a2/v2\n", "s2=m3/E3\n", "\n", "#For iron voltameter\n", "E4=a3/v3\n", "m4=(s/a)*E4\n", "\n", "#Result\n", "print\"Mass of hydrogen liberated is\",round(s*10**8,4)*10**-8\n", "print\"Mass of copper deposited is\",round(s1*10**8,4)*10**-8\n", "print\"Mass of silver deposited is\",round(s2*10**8,4)*10**-8\n", "print\"Mass of iron deposited is\", round(m4*10**7,2)*10**-7,\"Kg/C\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass of hydrogen liberated is 1.0417e-08\n", "Mass of copper deposited is 1.0356e-08\n", "Mass of silver deposited is 1.038e-08\n", "Mass of iron deposited is 1.92e-07 Kg/C\n" ] } ], "prompt_number": 104 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.8 Page no 287" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "m=2.5 #g\n", "I=10 #A\n", "F=96500 #C/mol\n", "m1=63.5\n", "n=2.0\n", "\n", "#Calculation\n", "E=m1/n\n", "t=m*F/(E*I)\n", "\n", "#Result\n", "print\"Time required is\",round(t,1),\"S\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time required is 759.8 S\n" ] } ], "prompt_number": 110 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.9 Page no 287" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "m=16.43 #g\n", "t=4000 #s\n", "F=96485 #C/mol\n", "m1=63.54\n", "n=2.0\n", "I1=12.6 #A\n", "\n", "#Calculation\n", "E=m1/n\n", "I=m*F/(E*t)\n", "I2=I1-I\n", "\n", "#Result\n", "print\"Error in the ammeter reading is\", round(I2,3),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Error in the ammeter reading is 0.126 A\n" ] } ], "prompt_number": 119 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.10 Page no 287" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "t=600 #S\n", "m=5.92 #g\n", "F=96500 #C/mol\n", "V1=1.62 #V\n", "V2=1.34\n", "m1=63.5\n", "n=2.0\n", "\n", "#Calculation\n", "V=V1-V2\n", "E=m1/n\n", "I=m*F/(E*t)\n", "R=V/I\n", "\n", "#Result\n", "print\"Resistance of the voltmeter is\",round(R*10**3,2),\"m ohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance of the voltmeter is 9.34 m ohm\n" ] } ], "prompt_number": 123 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.11 Page no 287" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "E=8 #V\n", "r=1 #ohm\n", "R=15 #ohm\n", "E1=120\n", "t=300 #s\n", "\n", "#Calculation\n", "I=(E1-E)/(R+r)\n", "V=E+(I*r)\n", "E12=E*I*t\n", "\n", "#Result\n", "print\"(a) Current in the circuit is\", I,\"A\"\n", "print\"(b) Terminal voltage across the battery is\",V,\"V\"\n", "print\"(c) Chemical energy stored in the battery is\",E12,\"J\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Current in the circuit is 7 A\n", "(b) Terminal voltage across the battery is 15 V\n", "(c) Chemical energy stored in the battery is 16800 J\n" ] } ], "prompt_number": 133 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.12 Page no 288" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "I=10 #A\n", "t=300 #S\n", "m=2.016\n", "n=2.0\n", "n1=1.0\n", "m1=1.008\n", "F=96500\n", "V=22.4\n", "\n", "#Calculation\n", "q=I*t\n", "M=m/n\n", "M2=m1/n1\n", "q1=F*m/m1\n", "V1=V*q/q1\n", "\n", "#Result\n", "print\"Volume of hydrogen is\",round(V1,4),\"litre\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Volume of hydrogen is 0.3482 litre\n" ] } ], "prompt_number": 136 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.13 Page no 288" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "w=107.9 #g/mol\n", "r=2 #ohm\n", "E=12 #V\n", "V=10\n", "F=96500\n", "t=1800\n", "\n", "#Calculation\n", "R=r*(V/(E-V))\n", "I=E/(R+r)\n", "E=w/I\n", "z=E/F\n", "m=z*I*t\n", "\n", "#Result\n", "print\"Silver deposited at the cathode is\", round(m,2),\"g\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Silver deposited at the cathode is 2.01 g\n" ] } ], "prompt_number": 143 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.14 Page no 288" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "I=5.0 #A\n", "a=0.5 #mole\n", "n=1\n", "F=96500\n", "I1=10 #A\n", "t1=9650*2\n", "n1=2.0\n", "m=63.54\n", "m2=55.85\n", "n2=3.0\n", "\n", "#Calculation\n", "q=F*a\n", "t=q/I\n", "E=m/n1\n", "m1=(E*I1*t1)/F\n", "E3=m2/n2\n", "m3=(E3*I1*t1)/F\n", "\n", "#Result\n", "print\"Molar mass of copper is\", m1,\"equal to its atomic mass i.e 1 mole of copper is liberated.\"\n", "print\"Molar mass of iron is\",round(m3,3),\"Hence 2/3 mole of iron will be deposited.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Molar mass of copper is 63.54 equal to its atomic mass i.e 1 mole of copper is liberated.\n", "Molar mass of iron is 37.233 Hence 2/3 mole of iron will be deposited.\n" ] } ], "prompt_number": 153 } ], "metadata": {} } ] }