{ "metadata": { "name": "", "signature": "sha256:52e9ff37336a0b3392520c7ec0e817b37056adea4740de3297c85e4e3e83dc56" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 33 Solids" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 33.1 Page no 904" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "Eg=0.72*1.6*10**-19 #J\n", "h=6.62*10**-34\n", "c=3*10**8\n", "\n", "#Calculation\n", "L=(h*c)/Eg\n", "\n", "#Result\n", "print\"The maximum wavelength of electromagnetic radiation is\",round(L*10**6,3)*10**-6,\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum wavelength of electromagnetic radiation is 1.724e-06 m\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 33.2 Page no 904" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "n1=1.5*10**16 #/m**3\n", "nh=4.5*10**22\n", "\n", "#Calculation\n", "ne=n1**2/nh\n", "\n", "#Result\n", "print\"ne in the doping silicon is\",ne*10**-9,\"*10**9 /m**3\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ne in the doping silicon is 5.0 *10**9 /m**3\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 33.3 Page no 904" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "ne=8*10**19 #/m**3\n", "nh=5*10**18\n", "ue=2.3 #m**2/V/S\n", "uh=0.01\n", "e=1.6*10**-19\n", "\n", "#Calculation\n", "a=1/(e*((ne*ue)+(nh*uh)))\n", "\n", "#Result\n", "print\"(a) The semiconductor has greater electron concentration, it is n-type semiconductor\"\n", "print\"(b) Resistivity is\", round(a*10**2,3),\"*10**-2 ohm/m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) The semiconductor has greater electron concentration, it is n-type semiconductor\n", "(b) Resistivity is 3.396 *10**-2 ohm/m\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 33.4 Page no 904" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "e=1.6*10**-19 #C\n", "A=500 #ohm**-1 m**-1\n", "Ue=0.39 #m**2 V**-1 s**-1\n", "\n", "#Calculation\n", "Ne=A/(e*Ue)\n", "\n", "#Result\n", "print\"The number density of donor atoms is\",round(Ne*10**-21,3)*10**21,\"m**3\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number density of donor atoms is 8.013e+21 m**3\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 33.5 Page no 904" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "F=1.6*10**-19 #E\n", "W=4.2*10**8\n", "e=2.4\n", "w=4.2*10**-8\n", "\n", "#Calculation\n", "S=F*W\n", "A=S/F\n", "E=e/w\n", "\n", "#Result\n", "print\"Electric field is\", round(E*10**-7,2),\"*10**7 V/m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Electric field is 5.71 *10**7 V/m\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 33.6 Page no 904" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "h=6.62*10**-34\n", "c=3*10**8\n", "l=630*10**-9\n", "e=1.6*10**-19\n", "\n", "#Calculation\n", "Eg=(h*c)/(l*e)\n", "\n", "#Result\n", "print\"Width of the forbidden energy gap is\",round(Eg,2),\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Width of the forbidden energy gap is 1.97 eV\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 33.7 Page no 904" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#iven\n", "A=10**-4 #m**2\n", "l=0.1 #m\n", "V=2 #V\n", "T=300 #K\n", "ue=0.135 #m**2/V/S\n", "n=1.5*10**15 #/m**3\n", "uh=0.048 #m**2/V/S\n", "e=1.6*10**-19\n", "ue1=0.39\n", "uh1=0.19\n", "n1=2.4*10**19\n", "\n", "#Calculation\n", "E=V/l\n", "ve=ue*E\n", "vh=uh*E\n", "Ie=e*A*n*ve\n", "Ih=e*A*n*vh\n", "I=Ie+Ih\n", "ve1=ue1*E\n", "ve2=uh1*E\n", "Ie1=e*A*n1*ve1\n", "Ie2=e*A*n1*ve2\n", "I1=Ie1+Ie2\n", "\n", "#Result\n", "print\"Electron current is\", Ie*10.0,\"A \\nHole current is\",Ih*10,\"A\"\n", "print\"Magnitude of total current is\",I*10,\"A \\nTotal current when germanium is used is\",I1*10**3,\"*10**-3 A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Electron current is 6.48e-07 A \n", "Hole current is 2.304e-07 A\n", "Magnitude of total current is 8.784e-07 A \n", "Total current when germanium is used is 4.4544 *10**-3 A\n" ] } ], "prompt_number": 48 } ], "metadata": {} } ] }