{ "metadata": { "name": "", "signature": "sha256:c3ec75ccee40d0eb91752b49524186dbe794af4f0e24a564bb72af8d09f81af1" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 3 Electric potential" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.1 Page no 65" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "q=4.0 #c\n", "Va=-10 #V\n", "Wab=100 #joule\n", "\n", "#Calculation\n", "V=(Wab/q)+Va\n", "\n", "#Result\n", "print\"The value of V is\", V,\"Volts\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of V is 15.0 Volts\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.2 Page no 65" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "Z=79\n", "e=1.6*10**-19 #C\n", "r=6.6*10**-15 #m\n", "m=9*10**9\n", "\n", "#Calculation\n", "q=Z*e\n", "V=(m*q)/r\n", "\n", "#Result\n", "print\"Electric potential at the surface of a gold nucleus is\", round(V*10**-7,3),\"*10**7 V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Electric potential at the surface of a gold nucleus is 1.724 *10**7 V\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3 Page no 65" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "q=4*10**-7 #C\n", "r=0.09 #m\n", "m=9*10**9\n", "a=2*10**-9\n", "\n", "#Calculation\n", "Vp=(m*q)/r\n", "W=a*Vp\n", "\n", "#Result\n", "print\"(a) Potential at point P is\", Vp*10**-4,\"*10**4 V\"\n", "print\"(b) Work done is\", W,\"J\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Potential at point P is 4.0 *10**4 V\n", "(b) Work done is 8e-05 J\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.4 Page no 66" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "q=20*10**-6 #C\n", "r1=0.1 #m\n", "r2=0.05 #m\n", "m=9*10**9\n", "e=1.6*10**-19\n", "\n", "#Calculation\n", "Va=(m*q)/r1\n", "Vb=(m*q)/r2\n", "Wab=-(Va-Vb)*e\n", "\n", "#Result\n", "print\"Potential at point A is\", Va*10**-6,\"*10**6 V\"\n", "print\"Potential at point b is\", Vb*10**-6,\"*10**6 V\"\n", "print\"Work done is\",Wab,\"J\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Potential at point A is 1.8 *10**6 V\n", "Potential at point b is 3.6 *10**6 V\n", "Work done is 2.88e-13 J\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.5 Page no 66" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "m=9.0*10**9\n", "r=0.5\n", "a=16\n", "\n", "#Calculation\n", "q=(a*r)/m\n", "\n", "#Result\n", "print\"Magnitude of charge is\", round(q*10**10,2)*10**-10,\"C\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Magnitude of charge is 8.89e-10 C\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.6 Page no 66" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "q1=2*10**-6 #c\n", "q2=-2*10**-6\n", "q3=-3*10**-6\n", "q4=6*10**-6\n", "r=1.0 #m\n", "m=9*10**9\n", "\n", "#Calculation\n", "V=m*(q1+q2+q3+q4)/r\n", "\n", "#Result\n", "print\"Potential at the centre of the square is\",V*10**-4,\"*10**4 V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Potential at the centre of the square is 2.7 *10**4 V\n" ] } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.7 Page no 66" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "m=9*10**9\n", "q=5*10**-6\n", "r=0.1\n", "\n", "#Calculation\n", "V=(6*m*q)/r\n", "\n", "#Result\n", "print\"Potential at the centre of the hexagon is\", V*10**-6,\"*10**6 V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Potential at the centre of the hexagon is 2.7 *10**6 V\n" ] } ], "prompt_number": 45 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.9 Page no 67" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "r=0.1 #m\n", "q=200*10**-6 #C\n", "m=9*10**9\n", "\n", "#Calculation\n", "V=(m*q)/r\n", "\n", "#Result\n", "print\"Electric potential at the centre is\", V*10**-7,\"*10**7 V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Electric potential at the centre is 1.8 *10**7 V\n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.11 Page no 67" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "a=0.2 #m\n", "m=9*10**9\n", "q1=2*10**-9\n", "q2=4*10**-9\n", "q3=8*10**-9\n", "\n", "#Calculation\n", "import math\n", "V=m*((q1/a)+(q2/(a*math.sqrt(2)))+(q3/a))\n", "b=0.1*math.sqrt(2)\n", "V0=m*((q1/b)+(q2/b)+(q3/b))\n", "W=q*(V0-V)\n", "\n", "#Result\n", "print\"Required work is\",round(W*10**2,2)*10**-7,\"J\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Required work is 6.27e-07 J\n" ] } ], "prompt_number": 62 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.12 Page no 68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "V=60\n", "r=0.05\n", "\n", "#Calculation\n", "E=-V/r\n", "\n", "#Result\n", "print\"Electric field intensity between the two plate is\", E,\"V/m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Electric field intensity between the two plate is -1200.0 V/m\n" ] } ], "prompt_number": 66 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.13 Page no 68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "e=1.6*10**-19\n", "m=3*10**-16 #Kg\n", "r=5*10**-3 #m\n", "g=9.8\n", "\n", "#Calculation\n", "q=10*e\n", "V=(m*g*r)/q\n", "\n", "#Result\n", "print round(V,2),\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "9.19 V\n" ] } ], "prompt_number": 71 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.14 Page no 68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "q1=7*10**-6 #c\n", "q2=-2*10**-6 #C\n", "r12=0.18 #m\n", "m=9*10**9\n", "\n", "#Calculation\n", "U=m*((q1*q2)/r12)\n", "W=0-U\n", "\n", "#Result\n", "print\"(a) Electrostatic potential energy of a system is\",U,\"J\"\n", "print\"(b) work required is\", W,\"J\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Electrostatic potential energy of a system is -0.7 J\n", "(b) work required is 0.7 J\n" ] } ], "prompt_number": 78 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.15 Page no 68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "m=9*10**9\n", "e=1.6*10**-19 #C\n", "r=5.3*10**-11 #m\n", "\n", "#Calculation\n", "V=(m*e)/r\n", "U=((m*e*-e)/r)/e\n", "q=2*e\n", "V1=(m*q)/r\n", "\n", "#Result\n", "print\"(a) Electric potential is\", round(V,2),\"V\"\n", "print\"(b) Electric potential energy is\",round(V1,2),\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Electric potential is 27.17 V\n", "(b) Electric potential energy is 54.34 V\n" ] } ], "prompt_number": 91 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.16 Page no 69" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "r12=1.5*10**-10 #m\n", "r13=10.0**-10\n", "q1=1.6*10**-19 #C\n", "q3=-1.6*10**-19\n", "m=9*10**9\n", "\n", "#Calculation\n", "U=m*(((q1**2)/r12)+((q1*q3)/r13)+((q1*q3)/r13))/q1\n", "\n", "#Result\n", "print\"Potential energy is\",U,\"ev\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Potential energy is -19.2 ev\n" ] } ], "prompt_number": 109 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17 Page no 69" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "E=10**5 #N/C\n", "q=10**-6 #C\n", "a=0.02 #m\n", "A=1\n", "\n", "#Calculation'\n", "import math\n", "p=q*a\n", "t=p*E*A\n", "W=p*E*(math.cos(0*3.14/180.0)-math.cos(180*3.14/180.0))\n", "\n", "#Result\n", "print\"(i) Torque acting on dipole is\",t,\"N m\"\n", "print\"(ii) Work done is\", round(W,3),\"J\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Torque acting on dipole is 0.002 N m\n", "(ii) Work done is 0.004 J\n" ] } ], "prompt_number": 126 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.18 Page no 69" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "m=9*10**9\n", "q=8*10**-3\n", "q0=-2*10**-9\n", "ra=0.03\n", "rb=0.04\n", "\n", "#Calculation\n", "W=(m*q*q0*(1/rb-1/ra))\n", "\n", "#Result\n", "print\"Work done is\", W,\"J\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work done is 1.2 J\n" ] } ], "prompt_number": 129 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.19 Page no 69" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "qa=1.5*10**-6 #C\n", "qb=2.5*10**-6 \n", "a=0.15 #m\n", "m=9*10**9\n", "a1=0.18\n", "\n", "#Calculation\n", "import math\n", "V=((qa+qb)/a)*m\n", "Ea=m*qa/a**2\n", "Eb=m*qb/a**2\n", "E=Eb-Ea\n", "V1=((qa+qb)/a1)*m\n", "Ea1=m*qa/a1**2\n", "Ea2=m*qb/a1**2\n", "A=math.atan(15/10.0)*180/3.14\n", "A1=2*A\n", "A2=math.cos(A1*3.14/180.0)\n", "E3=math.sqrt(Ea1**2+Ea2**2+(2*Ea1*Ea2*A2))\n", "tb=Ea1*math.sin(A1*3.14/180.0)/(Ea2+Ea1*math.cos(A1*3.14/180.0))\n", "B=math.atan(tb)*180/3.14\n", "y=90-A\n", "Y=y+B\n", "\n", "#Result\n", "print \"(a) Net electric field is\",E*10**-5,\"*10**5 N/C\"\n", "print\"(b) Angle is\" ,round(Y,1),\"degree\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Net electric field is 4.0 *10**5 N/C\n", "(b) Angle is 69.4 degree\n" ] } ], "prompt_number": 160 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.23 Page no 71" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "q1=-1.6*10**-19 #C\n", "q2=1.6*10**19\n", "r12=0.53*10**-10 #m\n", "m=9*10**9\n", "r11=1.06*10**-10\n", "\n", "#Calculation\n", "U=((m*q1*q2)/r12)/q2\n", "K=U/2.0\n", "E=-(U-K)\n", "U1=((m*q1*q2)/r11)/q2\n", "E1=U-U1\n", "\n", "#Result\n", "print \"(a) Potential energy is\",round(U,2),\"ev\"\n", "print\"(b) Minimum work required is\",round(E,3) ,\"ev\"\n", "print\"(c) Potential energy is\",round(E1,3),\"ev\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Potential energy is -27.17 ev\n", "(b) Minimum work required is 13.585 ev\n", "(c) Potential energy is -13.585 ev\n" ] } ], "prompt_number": 181 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.24 Page no 72" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "E=10**6 #V/m\n", "p=10**-29 #cm\n", "a=6.023*10**23\n", "\n", "#Calculation\n", "import math\n", "Np=a*p\n", "U1=Np*E\n", "U2=Np*E*math.cos(60*3.14/180.0)\n", "U=U1-U2\n", "\n", "#Result\n", "print\"Heat released by the substance is\", round(U,2),\"J\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat released by the substance is 3.01 J\n" ] } ], "prompt_number": 188 } ], "metadata": {} } ] }