{ "metadata": { "name": "", "signature": "sha256:3a2694f8f0eab29c82f8ee266172c1c857b71aa63b1096f76897d1574494f3bb" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter9-The Flow of an Inviscid Fluid" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg380" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate Mass flow rate\n", "import scipy\n", "from scipy import integrate\n", "## p_a-p_b=-1/2*rho*C^2*(1/R_A^2-1/R_B^2)\n", "\n", "rho_w=1000.; ## kg/m^3\n", "g=9.81; ## m/s^2\n", "h=0.0115; ## m\n", "rho=1.22; ## kg/m^3\n", "R_A=0.4; ## m\n", "R_B=0.2; ## m\n", "\n", "C=math.sqrt(rho_w*g*h*2./(rho*(1./R_B**2-1./R_A**2)));\n", "\n", "def function(R):\n", "\ty=1./R;\n", "\treturn y;\n", "\n", "new=scipy.integrate.quad(function, R_B, R_A);\n", "m=rho*C*R_B*new[0]\n", "print\"%s %.4f %s\"%(\"Mass flow rate =\",m,\"kg/s\")\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass flow rate = 0.5312 kg/s\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg382" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#The maximum speed at which the paddles may rotate about their vertical axis\n", "## p=1/2*rho*w^2*R^2 + C\n", "\n", "\n", "## At z=0\n", "rho=900.; ## kg/m^3\n", "g=9.81; ## m/s^2\n", "h=0.6; ## m\n", "\n", "C=rho*g*h;\n", "\n", "## p = -rho*K^2/(2*R^2)+D\n", "## From this we get, D = 9*w^2 + C\n", "\n", "## At z = 0\n", "## p = D - rho*K^2/2/R^2;\n", "p_max=150000.; ## Pa\n", "\n", "## From the above equation we obtain,\n", "w=135.6; ## rad/s\n", "\n", "print'%s %.1f %s'%(\"The maximum speed at which the paddles may rotate about their vertical axis =\",w,\"rad/s\")\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum speed at which the paddles may rotate about their vertical axis = 135.6 rad/s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg386" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the strength of the line source and the distance s the line source is located behind the leading edge of the step and Horizontal component andVertical Component \n", "U=40; ## m/s\n", "h=0.01; ## m\n", "\n", "m=2*U*h;\n", "print'%s %.1f %s'%(\"the strength of the line source =\",m,\"m^2/s\")\n", "\n", "\n", "s = m/(2*math.pi*U);\n", "print'%s %.2f %s'%(\" the distance s the line source is located behind the leading edge of the step =\",s*1000,\"mm\")\n", "\n", "\n", "\n", "x=0; ## m\n", "y=0.005; ## m\n", "\n", "u=U + m/(2*math.pi)*(x/(x**2+y**2));\n", "v=m/(2*math.pi)*(y/(x**2+y**2));\n", "print'%s %.f %s'%(\"Horizontal component =\",u,\"m/s\")\n", "\n", "\n", "print'%s %.1f %s'%(\"Vertical Component =\",v,\"m/s\")\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the strength of the line source = 0.8 m^2/s\n", " the distance s the line source is located behind the leading edge of the step = 3.18 mm\n", "Horizontal component = 40 m/s\n", "Vertical Component = 25.5 m/s\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg389" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate length\n", "b=0.0375; ## m\n", "t=0.0625; ## m\n", "U=5.; ## m/s\n", "\n", "m=2*math.pi*U*t/math.atan(2*b*t/(t**2-b**2));\n", "\n", "L=2.*b*(1+m/(math.pi*U*b))**(1/2.);\n", "\n", "print'%s %.7f %s'%(\"L =\",L,\"m\")\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "L = 0.1515673 m\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg409" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate Lift coefficient and Drag coefficient and Effective angle of attack\n", "l1=10.; ## m\n", "r1=2.; ## m\n", "C_D1=0.0588;\n", "theta1=6.5; ## degrees\n", "\n", "AR1=l1/r1; ## Aspect ratio\n", "\n", "C_L=0.914;\n", "\n", "C_D2=C_L**2./(math.pi*AR1);\n", "theta2=math.atan(C_L/(math.pi*AR1))*57.3\n", "\n", "C_D3=C_D1-C_D2;\n", "theta3=theta1-theta2;\n", "\n", "AR2=8.;\n", "\n", "C_Di=C_L**2./(math.pi*AR2);\n", "C_D=C_Di+C_D3;\n", "\n", "theta4=math.atan(C_L/(math.pi*AR2))*57.3;\n", "theta=theta4+theta3;\n", "\n", "print'%s %.3f %s'%(\"Lift coefficient =\",C_L,\"\")\n", "\n", "\n", "print'%s %.4f %s'%(\"Drag coefficient =\",C_D,\"\")\n", "\n", "\n", "print'%s %.3f %s'%(\"Effective angle of attack =\",theta,\"degrees\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Lift coefficient = 0.914 \n", "Drag coefficient = 0.0389 \n", "Effective angle of attack = 5.253 degrees\n" ] } ], "prompt_number": 5 } ], "metadata": {} } ] }