{ "metadata": { "name": "", "signature": "sha256:1481d1999e9016b92221ce8448ff32599db545d782d2bf3365587f6b7e7a231e" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter6- Laminar Flow Between Solid Boundaries" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg196" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate Reynolds number and Maximum velocity and Volumetric flow rate and \"Pressure gradient along the pipe\n", "RD=0.83;\n", "rho_w=1000.; ## density of water in kg/m^3\n", "v=2.3; ## m/s\n", "d=0.012; ## m\n", "u=0.08; ## dynamic viscocity in kg/m/s\n", "\n", "rho_oil=RD*rho_w;\n", "\n", "Re=rho_oil*v*d/u;\n", "print'%s %.1f %s'%(\"Reynolds number =\",Re,\"\")\n", "\n", "v_max=2*v;\n", "print'%s %.1f %s'%(\"Maximum velocity =\",v_max,\"m/s^-1\")\n", "\n", "\n", "Q=math.pi/4*d**2*v;\n", "print'%s %.2f %s'%(\"Volumetric flow rate =\",Q,\"m^3/s^-1\")\n", "\n", "\n", "p=-128.*Q*u/math.pi/d**4;\n", "print'%s %.3f %s'%(\"Pressure gradient along the pipe = \",p,\"Pa/m^-1\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reynolds number = 286.3 \n", "Maximum velocity = 4.6 m/s^-1\n", "Volumetric flow rate = 0.00 m^3/s^-1\n", "Pressure gradient along the pipe = -40888.889 Pa/m^-1\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg203" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate Rate at which oil must be supplied\n", "c=0.001; ## m\n", "p1=15*10**3; ## Pa\n", "u=0.6; ## kg/m/s\n", "R=6.; ## ratio of R2/R1\n", "\n", "Q=math.pi*c**3*p1/(6*u*math.log(R));\n", "print'%s %.8f %s'%(\"Rate at which oil must be supplied =\",Q,\"m^3/s\")\n", "#without round off error we cant get exact result \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rate at which oil must be supplied = 0.00000731 m^3/s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg206" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate \"The load the pad will support and The rate at which oil must be supplied\n", "F=6*10**3; ## Pa\n", "b=0.12; ## m\n", "\n", "f=F*b;\n", "print'%s %.f %s'%(\"The load the pad will support =\",f,\"N/m\")\n", "\n", "\n", "dp=12*10**3; ## N/m^2\n", "dx=0.12; ## m\n", "c=0.00018; ## m\n", "u=0.5; ## kg/m/s\n", "V=5.; ## m/s\n", "\n", "q=(dp/dx)*c**3/12./u + V*c/2.;\n", "print'%s %.5f %s'%(\"The rate at which oil must be supplied =\",q,\"m^2/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The load the pad will support = 720 N/m\n", "The rate at which oil must be supplied = 0.00045 m^2/s\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg209" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate \"Velocity of the dashpot\n", "d_p=0.05; ## diameter of piston in m\n", "d_c=0.0504; ## diameter of cylinder in m\n", "SG=0.87;\n", "rho_w=1000.; ## kg/m^3\n", "v=10**-4; ## m^2/s\n", "dp=1.4*10**6; ## Pa\n", "l=0.13; ## m\n", "\n", "c=(d_c-d_p)/2.; ## clearance\n", "\n", "u=SG*rho_w*v; ## Dynamice viscocity\n", "\n", "Vp=dp*c**3/(6.*u*l*(d_p/2.+c));\n", "print'%s %.4f %s'%(\"Velocity of the dashpot =\",Vp,\"m/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of the dashpot = 0.0065 m/s\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg214" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#calculate Dynamic viscosity and Kinematic viscosity and Reynolds number of sphere and Reynolds number\n", "\n", "d=0.00475; ## m\n", "g=9.81; ## m/s^2\n", "rho_s=1151.; ## kg/m^3\n", "rho=880.; ## kg/m^3\n", "u=0.006; ## m/s\n", "\n", "F=math.pi/6.*d**3*g*(rho_s-rho);\n", "\n", "rat_d=0.25; ## ratio of d/D\n", "rat_F=1.8; ## ratio of F/Fo\n", "\n", "dynamic=F/(1.8*3*math.pi*u*d);\n", "\n", "kinematic=dynamic/rho;\n", "\n", "print'%s %.3f %s'%(\"Dynamic viscosity = \",dynamic,\"kg/m/s\")\n", "\n", "\n", "print'%s %.5f %s'%(\"Kinematic viscosity =\",kinematic,\"m^2/s\")\n", "\n", "\n", "print(\"Reynolds number of sphere \")\n", "\n", "Re=rho*u*d/dynamic;\n", "print'%s %.3f %s'%(\"Reynolds number =\",Re,\"\")\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Dynamic viscosity = 0.309 kg/m/s\n", "Kinematic viscosity = 0.00035 m^2/s\n", "Reynolds number of sphere \n", "Reynolds number = 0.081 \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg218" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate viscosity of the liquid \n", "D=0.120; ## m\n", "h=0.08; ## m\n", "c=0.001; ## m\n", "t=0.01875; ## m\n", "rev=65.; ## revolutions per min\n", "T=4*10**-3; ## N.m\n", "\n", "K1=math.pi*h/4./c;\n", "K2=math.pi/32./t;\n", "\n", "u=T/(rev*2*math.pi/60.)/(K1*D**3+K2*D**4);\n", "print'%s %.4f %s'%(\"viscosity of the liquid =\",u,\"pa.s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "viscosity of the liquid = 0.0054 pa.s\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg229" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate Volumetric flow rate of oil and The load supported by the bearing\n", "V=10.; ## m/s\n", "h1=0.0005; ## m\n", "h2=0.00025; ## m\n", "L=0.1; ## m\n", "b=0.1; ## m\n", "RD=0.87;\n", "u=2*10**-4; ## m^2/s\n", "rho_w=1000.; ## kg/m^3\n", "\n", "H=h1/h2;\n", "\n", "Q=V/2*(1+H**2)/(1+H**3)*b*h1;\n", "print'%s %.5f %s'%(\"Volumetric flow rate of oil =\",Q,\"m^3/s\")\n", "\n", "\n", "F=V/2.*(1.-(1.+H**2)/(1.+H**3))*12.*RD*rho_w*u/h1**2*L**2/4.*b;\n", "print'%s %.1f %s'%(\"The load supported by the bearing =\",F,\"N\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Volumetric flow rate of oil = 0.00014 m^3/s\n", "The load supported by the bearing = 4640.0 N\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }