{ "metadata": { "name": "", "signature": "sha256:333c941e92e4c238ee8e681acc0f0427a31d9cb623c5863e0f5d970ef2bcf529" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter3-The Principles Governing Fluids in Motion" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg105" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate Overall efficiency of the pump\n", "u_A=1.35; ## m/s\n", "d_A=0.225; ## m\n", "d_B=0.150; ## m\n", "d_C=0.150; ## m\n", "d=5.6; ##m\n", "friction=2.5; ## kW\n", "power_req=12.7; ## kW\n", "\n", "rho=1000.; ## kg/m^3\n", "rho_m=13560.; ## kg/m^3\n", "\n", "g=9.81; ## m/s^2\n", "\n", "pC=35000.; ## Pa\n", "pA=rho_m*g*(-d_B);\n", "\n", "Area_A=math.pi*d_A**2/4;\n", "Area_B=math.pi*d_B**2/4;\n", "Area_C=math.pi*d_C**2/4;\n", "\n", "u_B=u_A*(Area_A/Area_B);\n", "u_C=u_A*(Area_A/Area_C);\n", "\n", "## Energy_added_by_pump/time = (Mass/time)*((pC-pA)/rho+(u_C^2-u_A^2)/2+g*(zC-zA))\n", "\n", "Energy_added = Area_A*u_A*(pC-pA+rho/2.*(u_C**2-u_A**2)+rho*g*d)/1000.+friction;\n", "\n", "Efficiency=Energy_added/power_req*100.;\n", "\n", "print'%s %.1f %s'%(\"Overall efficiency of the pump =\",Efficiency,\" %\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Overall efficiency of the pump = 67.7 %\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg119" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate Rate of discharge\n", "d_jet = 0.0086; ## m\n", "d_orifice = 0.011; ## m\n", "x = 2.; ## m\n", "y = 0.6; ## m\n", "h = 1.75; ## m\n", "g = 9.81; ## m/s^2\n", "\n", "A2 = math.pi/4.*d_orifice**2;\n", "\n", "Cc = (d_jet/d_orifice)**2.; ## Coefficient of Contraction\n", "\n", "Cv = x/2./math.sqrt(y*h); ## Coefficient of velocity\n", "\n", "Cd = Cv*Cc; ## Coefficient of Discharge\n", "\n", "Q = Cd*A2*math.sqrt(2.*g*h);\n", "\n", "print'%s %.4f %s'%(\"Rate of discharge =\",Q,\"m^3/s \")\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rate of discharge = 0.0003 m^3/s \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg122" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate Flow rate\n", "Cd=0.97;\n", "d1=0.28; ## m\n", "d2=0.14; ## m\n", "\n", "g=9.81; ## m/s^2\n", "d=0.05; ## difference in mercury level in metre\n", "rho=1000.; ## kg/m^3\n", "rho_m=13600.; ## kg/m^3\n", "\n", "A1=math.pi/4.*d1**2.;\n", "A2=math.pi/4.*d2**2.;\n", "\n", "p_diff=(rho_m-rho)*g*d;\n", "h=p_diff/rho/g;\n", "\n", "Q=Cd*A1*((2.*g*h)/((A1/A2)**2-1.))**(1./2.);\n", "\n", "print'%s %.4f %s'%(\"Flow rate =\",Q,\"m^3/s \")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Flow rate = 0.0542 m^3/s \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg125" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate Mass flow rate\n", "Cd=0.62;\n", "g=9.81; ## m/s^2\n", "d=0.1; ## m\n", "d0=0.06; ## m\n", "d1=0.12; ## m\n", "\n", "rho=1000.; ## kg/m^3\n", "rho_m=13600.; ## kg/m^3\n", "rho_f=0.86*10**3; ##kg/m^3\n", "\n", "A0=math.pi/4.*d0**2.;\n", "A1=math.pi/4.*d1**2.;\n", "\n", "p_diff=(rho_m-rho_f)*g*d;\n", "\n", "h=p_diff/rho_f/g;\n", "\n", "Q=Cd*A0*((2.*g*h)/(1.-(A0/A1)**2))**(1./2.);\n", "\n", "m=rho_f*Q;\n", "\n", "print'%s %.2f %s'%(\"Mass flow rate =\",m,\"kg/s \")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass flow rate = 8.39 kg/s \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg130" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "Cd=0.61;\n", "#calculate Rate of discharge\n", "g=9.81; ## m/s^2\n", "b=0.6; ## m\n", "H=0.155; ## mQ\n", "A=0.26; ## m^2\n", "u1=0.254; ## m/s\n", "\n", "Q=2./3.*Cd*math.sqrt(2.*g*b*(H)**3/2);\n", "\n", "velo=Q/A;\n", "\n", "H1=H+u1**2/(2.*g);\n", "\n", "Q1=2./3.*Cd*math.sqrt(2*g*b*(H1)**3/2);\n", "\n", "print'%s %.3f %s'%(\"Discharge =\",Q1,\"m^3/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Discharge = 0.062 m^3/s\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }