{
 "metadata": {
  "name": "",
  "signature": "sha256:b9f90dbe8cdd3ac15f14ed9a5dcea4d99b8c522db4806d23bf359fc881d94c73"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter1-Fundamental concepts"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg18"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate denisty of air and its mass\n",
      "p=2.*10**5; ## Pa\n",
      "T=300.; ## K\n",
      "R=287.; ## J/(kg.K)\n",
      "V=3.; ## m^3\n",
      "\n",
      "rho=p/(R*T);\n",
      "print'%s %.2f %s'%('The density of air =',rho,'kg/m^3')\n",
      "m=rho*V;\n",
      "print'%s %.2f %s'%('Its mass =',m,'m^3')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The density of air = 2.32 kg/m^3\n",
        "Its mass = 6.97 m^3\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg19"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate gas constant Co ,Co2 ,No,N2o\n",
      "M_C=12.;\n",
      "M_N=14.;\n",
      "M_O=16.;\n",
      "R=8314.; ## J/(kg.K)\n",
      "\n",
      "M_CO=M_C+M_O;\n",
      "R_CO=R/M_CO;\n",
      "\n",
      "M_CO2=M_C+2.*M_O;\n",
      "R_CO2=R/M_CO2;\n",
      "\n",
      "M_NO=M_N+M_O;\n",
      "R_NO=R/M_NO;\n",
      "\n",
      "M_N2O=2.*M_N+M_O;\n",
      "R_N2O=R/M_N2O;\n",
      "\n",
      "print'%s %.1f %s'%('Gas constant for CO =',R_CO,'J/(kg.K)')\n",
      "print'%s %.1f %s'%('Gas constant for CO2 =',R_CO2,'J/(kg.K)')\n",
      "print'%s %.1f %s'%(\"Gas constant for NO =\",R_NO,\"J/(kg.K)\")\n",
      "print'%s %.1f %s'%(\"Gas constant for N2O =\",R_N2O,\"J/(kg.K)\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Gas constant for CO = 296.9 J/(kg.K)\n",
        "Gas constant for CO2 = 189.0 J/(kg.K)\n",
        "Gas constant for NO = 277.1 J/(kg.K)\n",
        "Gas constant for N2O = 189.0 J/(kg.K)\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3-pg36"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate reynodls number and prove the \n",
      "d=0.004; ## m\n",
      "rho=1000; ## kg/m^3\n",
      "v=3; ## m/s\n",
      "meu=10**(-3); ## khm(m.s)\n",
      "\n",
      "Re=rho*v*d/meu; \n",
      "print'%s %.f %s'%(\"Reynolds number =\",Re,\"\")\n",
      "\n",
      "print(\"The Reynolds number is well in excess of 4000, so the flow is turbulent.\")"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Reynolds number = 12000 \n",
        "The Reynolds number is well in excess of 4000, so the flow is turbulent.\n"
       ]
      }
     ],
     "prompt_number": 4
    }
   ],
   "metadata": {}
  }
 ]
}