{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 2: Bonding in Solids" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.1,Page number 62" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The binding energy of KCl = 7.10982502818 eV\n" ] } ], "source": [ "import math\n", "\n", "#Given Data\n", "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n", "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", "r = 3.147*10**-10; # Nearest neighbour distance for KCl, m\n", "n = 9.1; # Repulsive exponent of KCl\n", "A = 1.748; # Madelung constant for lattice binding energy\n", "E = A*e**2/(4*math.pi*epsilon_0*r)*(n-1)/n/e; # Binding energy of KCl, eV\n", "print\"The binding energy of KCl = \",round(E,4),\"eV\";\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.2,Page number 62" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The binding energy of NaCl = 181.1005 kcal/mol\n" ] } ], "source": [ "import math\n", "\n", "#Given Data\n", "\n", "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n", "N = 6.023*10**23; # Avogadro's number\n", "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", "a0 = 5.63*10**-10; # Lattice parameter of NaCl, m\n", "r0 = a0/2; # Nearest neighbour distance for NaCl, m\n", "n = 8.4; # Repulsive exponent of NaCl\n", "A = 1.748; # Madelung constant for lattice binding energy\n", "E = A*e**2/(4*pi*epsilon_0*r0)*(n-1)/n/e; # Binding energy of NaCl, eV\n", "print\"The binding energy of NaCl = \",round(E*N*e/(4.186*1000),4),\"kcal/mol\" ;\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.3,Page number 62" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The nearest neighbour distance of KCl = 3.1376 angstorm\n" ] } ], "source": [ "import math\n", "\n", "#Given Data\n", "\n", "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n", "N = 6.023*10**23; # Avogadro's number\n", "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", "E = 162.9*10**3; # Binding energy of KCl, cal/mol\n", "n = 8.6; # Repulsive exponent of KCl\n", "A = 1.747; # Madelung constant for lattice binding energy\n", "# As lattice binding energy, E = A*e**2/(4*%pi*epsilon_0*r0)*(n-1)/n, solving for r0\n", "r0 = A*N*e**2/(4*pi*epsilon_0*E*4.186)*(n-1)/n; # Nearest neighbour distance of KCl, m\n", "print\"The nearest neighbour distance of KCl = \",round(r0*10**10,4),\"angstorm\";\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.4,Page number 63" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The nearest neighbour distance of CsCl = 3.4776 angstrom\n" ] } ], "source": [ "import math\n", "\n", "#Given Data\n", "\n", "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n", "N = 6.023*10**23; # Avogadro's number\n", "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", "E = 152*10**3; # Binding energy of CsCl, cal/mol\n", "n = 10.6; # Repulsive exponent of CsCl\n", "A = 1.763; # Madelung constant for lattice binding energy\n", "\n", "# As lattice binding energy, E = A*e**2/(4*pi*epsilon_0*r0)*(n-1)/n, solving for r0\n", "r0 = A*N*e**2/(4*pi*epsilon_0*E*4.186)*(n-1)/n; # Nearest neighbour distance of CsCl, m\n", "print\"The nearest neighbour distance of CsCl = \",round(r0*10**10,4),\"angstrom\";\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.5,Page number 63" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "The repulsive exponent of NaI = 0.363\n" ] } ], "source": [ "import math\n", "\n", "#Given Data\n", "\n", "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n", "N = 6.023*10**23; # Avogadro's number\n", "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", "r0 = 6.46*10**-10; # Nearest neighbour distance of NaI\n", "E = 157.1*10**3; # Binding energy of NaI, cal/mol\n", "A = 1.747; # Madelung constant for lattice binding energy\n", "\n", "# As lattice binding energy, E = -A*e**2/(4*pi*epsilon_0*r0)*(n-1)/n, solving for n\n", "n = 1/(1+(4.186*E*4*pi*epsilon_0*r0)/(N*A*e**2)); # Repulsive exponent of NaI\n", "print\"\\nThe repulsive exponent of NaI = \",round(n,4);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.6,Page number 63" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The compressibility of the solid = 3.329e-01 metre square per newton\n" ] } ], "source": [ "import math\n", "\n", "#Given Data\n", "\n", "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", "a0 = 2.8158*10**-10; # Nearest neighbour distance of solid\n", "A = 1.747; # Madelung constant for lattice binding energy\n", "n = 8.6; # The repulsive exponent of solid\n", "c = 2; # Structural factor for rocksalt\n", "# As n = 1 + (9*c*a0**4)/(K0*e**2*A), solving for K0\n", "K0 = 9*c*a0**4/((n-1)*e**2*A); # Compressibility of solid, metre square per newton\n", "print\"The compressibility of the solid = \", \"{0:.3e}\".format(K0),\"metre square per newton\";" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.7,Page number 69" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The percentage ionic character present in solid = 22.12 percent \n" ] } ], "source": [ "import math\n", "\n", "#Given Data\n", "\n", "chi_diff = 1; # Electronegativity difference between the constituent of elements of solid\n", "percent_ion = 100*(1-math.e**(-(0.25*chi_diff**2))); # Percentage ionic character present in solid given by Pauling\n", "print\"The percentage ionic character present in solid = \",round(percent_ion,2),\"percent \";\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.8,Page number 69" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The fractional ionicity of GaAs = 0.3126\n", "The fractional ionicity of CdTe = 0.7168\n" ] } ], "source": [ "import math\n", "\n", "#Given Data\n", "\n", "Eh_GaAs = 4.3; # Homopolar gap of GaAs compound, eV\n", "C_GaAs = 2.90; # Ionic gap of GaAs compound, eV\n", "Eh_CdTe = 3.08; # Homopolar gap of CdTe compound, eV\n", "C_CdTe = 4.90; # Ionic gap of CdTe compound, eV\n", "\n", "fi_GaAs = C_GaAs**2/(Eh_GaAs**2 + C_GaAs**2);\n", "fi_CdTe = C_CdTe**2/(Eh_CdTe**2 + C_CdTe**2);\n", "print\"The fractional ionicity of GaAs = \",round(fi_GaAs,4);\n", "print\"The fractional ionicity of CdTe = \",round(fi_CdTe,4);\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }