{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 7:Synchronous Machines" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.1:Page number-412" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n= 3000.0 rpm\n", "D= 0.764 m\n", "output of the alternator= 3505.213 KVA\n" ] } ], "source": [ "import math\n", "\n", "#case a\n", "\n", "f=150\n", "p=2\n", "\n", "#assume the diameter of the stator bore is d meter\n", "n=120*50/2 #where n is rotor speed\n", "\n", "print \"n=\",round(n,0),\"rpm\"\n", "\n", "pi=3.14\n", "d=(120*60)/(pi*3000) \n", "\n", "print \"D=\",round(d,3),\"m\"\n", "\n", "#case b\n", "\n", "k=2\n", "l=1\n", "o=k*d**2*n*l\n", "\n", "print \"output of the alternator=\",round(o,3),\"KVA\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.2:Page number-423 " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The total number of cycles the clock should perform in 24 hours for correct time is= 4320000.0\n", "The number of cycles clock performs from 8am to 7pm is= 1977120.0\n", "The desired average frequency for correct time for remaining 13 hours is= 50.06154\n", "s= 0.8\n", "time= 57.6\n" ] } ], "source": [ "import math\n", "\n", "#The total number of cycles the clock should perform in 24 hours for correct time is\n", "\n", "t=24*60*60*50\n", "\n", "print \"The total number of cycles the clock should perform in 24 hours for correct time is=\",round(t,0)\n", "\n", "#The number of cycles the clock performs from 8am to 7pm is\n", "\n", "n=(6*49.95+5*49.90)*60*60\n", "\n", "print \"The number of cycles clock performs from 8am to 7pm is=\",round(n,0)\n", "\n", "#the number of cycles required in remaining 13 hours is t-n that is 2342.88*10**3\n", "\n", "a=(2342.88*10**3)/(13*60*60)\n", "\n", "print \"The desired average frequency for correct time for remaining 13 hours is=\",round(a,5)\n", "\n", "#The shortfall in number of cycles from 8am to 7pm\n", "\n", "s=0.05*6+0.10*5\n", "\n", "print \"s=\",round(s,3)\n", "\n", "#The time by which the clock is incorrect at 7pm\n", "\n", "time=(0.8*60*60)/50\n", " \n", "print \"time=\",round(time,5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.3:Page number-423" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "frequency= 50.0 Hz\n", "Phase emf= 2301.696 v\n", "The line voltage is= 3986.654 v\n" ] } ], "source": [ "import math\n", "\n", "#given\n", "\n", "n=500 #speed to rotation\n", "p=12 #poles\n", "\n", "#case a\n", "\n", "f=n*p/120 #frequency\n", "print \"frequency=\",round(f,0),\"Hz\"\n", " \n", "#case b\n", "\n", "kp=1 #kp is the winding at full pitch\n", "\n", "#kd is the distribution factor where kd=sin[mk/2]/msin(k/2) where k is a gama function\n", "\n", "#m=108/12*3\n", "m=3\n", "\n", "#gama or k=180/slots per pole=9 k=20\n", "\n", "#after substituting above values in kd we get kd=0.96\n", "\n", "#z=108*12/3 = 432\n", "\n", "ep=2.22*1*0.96*432*50*50*10**-3\n", "\n", "print \"Phase emf=\",round(ep,3),\"v\"\n", "\n", "#case c\n", "\n", "vl=3**0.5*ep\n", "\n", "print \"The line voltage is=\",round(vl,3),\"v\"\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.4:Page number-424" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n= 600.0 rpm\n", "phase emf= 1864.44569 v\n", "the line voltage= 3229.315 v\n" ] } ], "source": [ "import math\n", "\n", "#given\n", "\n", "f=50 #frequency\n", "p=10 #number of poles\n", "\n", "#case a\n", "n=120*f/p\n", "\n", "print \"n=\",round(n,0),\"rpm\"\n", "\n", "#case b\n", "\n", "#the pitch factor kp=0.966\n", "\n", "#m=2 and gama=180/slots per pole and it is obtained as 30\n", "\n", "#kd=sin[(mgama)/2]/msin(gama/2)=0.966\n", "\n", "z=6*2*10\n", "\n", "ep=z*2.22*0.966*0.966*50*0.15\n", "\n", "print \"phase emf=\",round(ep,5),\"v\"\n", "\n", "#case c\n", "\n", "el=3**0.5*ep\n", "\n", "print \"the line voltage=\",round(el,3),\"v\"\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.5:Page number-436" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5.44650074006\n" ] } ], "source": [ "import math\n", "\n", "#given\n", "\n", "vt=1905.26 #at angle 0\n", "angle=36.87\n", "ia=43.74 #at angle -36.87\n", "zs=3.51 #at angle 85.91\n", "\n", "#e=vt+ia*zs\n", "#(1905.26+43.74*3.51angle(85.91-36.87))\n", "#1905.26+153.35angle(49.04)\n", "#1905.26+153.35*(0.6558+j0.7551)\n", "#=2009.03 angle(3.31)\n", "\n", "p=((2009.03-1905.26)/1905.26)*100\n", "\n", "print p\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.6:Page number-439" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4.46227272727\n", "-9.335\n", "17.7059090909\n" ] } ], "source": [ "import math\n", "\n", "#given\n", "\n", "zs=4 # at angle 84.26\n", "xs=3.98\n", "impangle=84.26\n", "\n", "#case a\n", "\n", "#vt=2200+j0\n", "#ia=120\n", "#e=vt+ia*zs\n", "#on substituting and calculating we get the value of e as 2298.17 at 12 degrees\n", "\n", "p=((2298.17-2200)/2200)*100\n", "\n", "print p\n", "\n", "#case b\n", "\n", "#performing same functions as above for pf leading 0.8 we get e=1994.63 at 12 degrees\n", "\n", "p=((1994.63-2200)/2200)*100\n", "\n", "print p\n", "\n", "#case c\n", "\n", "#same as above but pf lags by 0.707 and on calculating generates e as 2589.53\n", "\n", "p=((2589.53-2200)/2200)*100\n", "\n", "print p\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.7:Page number-444" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "load voltage= 209.4847 v\n", "the load current is 20.95 at angle -38.65\n", "The output of generator1= 2094.4 VA\n", "The output of generator2= 2514.6 VA\n" ] } ], "source": [ "import math\n", "\n", "#From the circuit diagram of the figure we can obtain tha following equations based on which the problems are solved\n", "#eqn 1..........vl=(i1+i2)*zl....the load voltage\n", "#eqn 2..........vl=e1-i1*z1=e2-i2*z2\n", "#eqn 3..........i1=(e1-vl)*y1 and i2=(e2-vl)*y2\n", "#eqn 4..........vl=(e1*y1+e2+y2)/(y1+y2+yl)\n", "\n", "#load voltage case a\n", "\n", "#vl=209.26-j*9.7 in x+iy form and angle is calculated \n", "\n", "vl=(209.26**2+9.7**2)**0.5\n", "\n", "print \"load voltage=\",round(vl,5),\"v\"\n", "\n", "#using eqn 3 the following generator currents are generated\n", "\n", "#i1=7.45-j5.92 for which i1=9.52 at angle -38.45 is generated\n", "#i2=8.91-j7.17 for which i2=11.43 at angle -38.83 is generated\n", "\n", "#case b\n", "\n", "#the load current il=i1+i2 is obtained as 20.95 at angle -38.65\n", "\n", "print \"the load current is 20.95 at angle -38.65\"\n", "\n", "#case c\n", "\n", "g1=220*9.52\n", "g2=220*11.43\n", "\n", "print \"The output of generator1=\",round(g1,3),\"VA\"\n", "print \"The output of generator2=\",round(g2,4),\"VA\"\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.8:Page number-446" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "E= 6600.12121 V\n", "The power angle=13.63\n", "Armature current= 295.18199 A\n", "power factor=0.68\n" ] } ], "source": [ "import math\n", "\n", "#case a\n", "\n", "#case 1\n", "\n", "v=6600 #voltage\n", "ir=200 #armature current\n", "xs=8 #reactance\n", "\n", "e=(v**2+(ir*xs))**0.5\n", "\n", "print \"E=\",round(e,5),\"V\"\n", "\n", "#case 2\n", "\n", "#from triangle in the firgure the power angle is obtained as 13.63\n", "\n", "print \"The power angle=13.63\"\n", "\n", "#case b\n", "\n", "#due to excitation we obtain ix=217.10A\n", "\n", "#case 3\n", "ix=217.10\n", "i=((ir**2+ix**2))**0.5\n", "\n", "print \"Armature current=\",round(i,5),\"A\"\n", "\n", "#case 4\n", "\n", "#power factor cos(angle)=ir/i=0.68\n", "\n", "print \"power factor=0.68\"\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.9:Page number-447" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "armature current= 356.6275 A\n", "power factor= 0.84121\n" ] } ], "source": [ "import math\n", "\n", "#this problem has few notations and values taken from problem above\n", "#case a\n", "\n", "#the generator output becomes 1.5*6600*200\n", "\n", "o=1980 #generator output\n", "#the power angle is obtaimed as 16.42\n", "\n", "#applying cosine to the triangle in the problem gives ixs=2853.02\n", "#hence armature current is\n", "i=2853.02/8\n", "\n", "print \"armature current=\",round(i,5),\"A\"\n", "\n", "#case b\n", "\n", "pf=1980000/(6600*356.63) #power factor=o/(V*I)\n", "\n", "print \"power factor=\",round(pf,5)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.10:Page number-454" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Power supplied to the motor is= 467500.0 kW\n", "emf induced=5744.08 at angle -10.39\n", "emf induced=7051.44 at angle -8.88\n" ] } ], "source": [ "import math\n", "\n", "#case a\n", "\n", "vl=11000\n", "il=50\n", "pf=0.85 #powerfactor\n", "\n", "p=vl*il*pf\n", "\n", "print \"Power supplied to the motor is=\",round(p,5),\"kW\"\n", "\n", "#case b\n", "\n", "vt=6350.85 #at angle 0 \n", "zs=25.02 #at angle 0\n", "\n", "#subcase 1 powerfactor at 0.85 lag\n", "\n", "#e=vt-ia*zs\n", "#e=6350.85-50(at angle -31.79)*25.02(at angle 87.71)\n", "\n", "#substituting and solving as in x+iy form we get 5744.08 at angle -10.39 as the value of e\n", "\n", "print \"emf induced=5744.08 at angle -10.39\"\n", "\n", "#subcase 2\n", "\n", "#for a 0.85 lead same process as above is followed except angles are considered positive due to lead\n", "\n", "print \"emf induced=7051.44 at angle -8.88\"\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.11:Page number-455" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input KVA to the motor is= 15.069\n", "the power factor=0.70\n" ] } ], "source": [ "import math\n", "\n", "#given and calculted using regular formulas\n", "\n", "p=14.38\n", "q=10.78 #reactive power component \n", "\n", "pm=8.95 #mechanical load driven by motor \n", "#In order to make pf of the circuit load to improve to unity the motor must supply power to the circuit equalling q\n", "#hence total input power s to the motor maybe written as s=(pm/n)+jQ\n", "#on sustituting values we get s=10.53+j10.78 KVA\n", "\n", "i=((10.53**2+10.78**2)**0.5)\n", "\n", "print \"input KVA to the motor is=\",round(i,3)\n", "\n", "#from the triangle the angle is obtained as 45.67\n", "#hence the power factor is cos(45.67)=0.70\n", "\n", "print \"the power factor=0.70\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }