{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 4:Alternating quantities" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.1:Page number-193" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "e(t)=0 V\n", "e(t)= 362.58 V\n", "e(t)= 418.67 V\n" ] } ], "source": [ "import math \n", "\n", "#given\n", "\n", "b=0.2\n", "a=0.04\n", "n=1000/float(60) #rev/sec\n", "t=500\n", "\n", "#case a\n", "\n", "#since coil is at right angles ang=0\n", "\n", "print \"e(t)=0 V\"\n", "\n", "#case b\n", "\n", "#when coil is 30deg to the field ang=60\n", "\n", "#p=math.sin(60) \n", "\n", "p=0.8660254\n", "\n", "e=2*3.14*a*n*b*t*p\n", "\n", "\n", "print \"e(t)=\",format(e,'.2f'),\"V\"\n", "\n", "#case c\n", "\n", "#when ang=90 that is coil is in the plane of the field\n", "\n", "#p=math.sin(90)\n", "\n", "p=1\n", "e=2*3.14*b*a*n*p*t\n", "\n", "print \"e(t)=\",format(e,'.2f'),\"V\"" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Example 4.2:Page number-202" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "t= 0.0167 sec\n", "f= 60.0 Hz\n", "t= -0.0014 sec\n" ] } ], "source": [ "import math\n", "\n", "#given\n", "\n", "vm=155\n", "omega=377\n", "\n", "#case a\n", "\n", "t=(2*3.14)/float(omega)\n", "\n", "print \"t=\",format(t,'.4f'),\"sec\"\n", "\n", "#case b\n", "\n", "f=1/float(t)\n", "\n", "print \"f=\",format(f,'.1f'),\"Hz\"\n", "\n", "#case c\n", "\n", "v=109.60 #rms value\n", "\n", "#at t=0 -77.5=155*sin(ang)\n", "\n", "#therefore, ang=-0.5236 rad\n", "\n", "ang=-0.5236\n", "\n", "t=ang/omega\n", "\n", "print \"t=\",format(t,'.4f'),\"sec\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.3" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "i= 10.0 A\n", "f= 50.0 A\n", "i= 0.15 A\n", "NOTE:Answer calculated wrongly in textbook for i obtained here\n" ] } ], "source": [ "import math\n", "\n", "#given\n", "\n", "#i=14.14*sin(314t)-->i=im*sin(omega*t)\n", "\n", "#case a\n", "\n", "im=14.14\n", "i=14.14/1.414 #1.414 is the value of root 2\n", "\n", "print \"i=\",format(i,'.1f'),\"A\"\n", "\n", "#case b\n", "\n", "#omega=314=2*3.14*f\n", "\n", "f=314/float(2*3.14)\n", "\n", "print \"f=\",format(f,'.1f'),\"A\"\n", "\n", "#case c\n", "\n", "t=0.002\n", "\n", "#i=im*sin(omega*t)\n", "\n", "p=0.01096 #value of sin(omega*t)\n", "i=im*p\n", "\n", "print \"i=\",format(i,'.2f'),\"A\" \n", "\n", "print \"NOTE:Answer calculated wrongly in textbook for i obtained here\"\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.4:Page number-203" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "I= 24.496 A\n" ] } ], "source": [ "import math\n", "\n", "i=20\n", "im=i/float(1.414) #that is i*root 2\n", "\n", "#the heat produced by i is the sum of heat produced by dc and ac current\n", "p=i**2\n", "q=im**2\n", "r=p+q\n", "I=(r**0.5)\n", "\n", "print \"I=\",format(I,'.3f'),\"A\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.5" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "i= 0.2 A\n", "i= 1.4 A\n", "NOTE:The answer given in text is printed wrongly\n", "t= 0.00333 A\n" ] } ], "source": [ "import math\n", "\n", "f=50\n", "irms=10\n", "\n", "im=irms/float(0.707)\n", "\n", "#omega*t=2*3.14*f*t here the value for t can be substituted and value for i can be found from i=im*sin(omega*t)\n", "\n", "t=0.0025\n", "p=0.0137 #value of sin(314*0.0025)\n", "i=(10*p)/float(0.707)\n", "\n", "print \"i=\",format(i,'.1f'),\"A\"\n", "\n", "#maximum value is when 314*t=pi/2 (in radians)-->t=0.005\n", "\n", "#hence at t=0.005+0.0125=0.0175 the value of i nedds to be found\n", "p=0.0957\n", "i=(10*p)/float(0.707)\n", "\n", "print \"i=\",format(i,'.1f'),\"A\"\n", "print \"NOTE:The answer given in text is printed wrongly\"\n", "\n", "i=7.07\n", "\n", "#7.07=(10*sin314t)/0.707-->t=0.00833 sec\n", "\n", "t=0.00833-0.005 #the time at which the instaneous value is 7.07A after positive maximum value is at this time\n", "\n", "print \"t=\",format(t,'.5f'),\"A\"\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.6:Page number-204" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "v= 25.79 V\n", "vavg= 20.0 v\n", "1.28937969582\n", "1.93891683582\n", "rms value for a sin wave with the same peak value is= 35.35 V\n" ] } ], "source": [ "import math\n", "\n", "#from graph \n", "a=0\n", "b=5**2\n", "c=10**2\n", "c=20**2\n", "d=40**2\n", "e=50**2\n", "f=40**2\n", "g=20**2\n", "h=10**2\n", "i=5**2\n", "v=(0.1*(a+b+c+d+e+f+g+h+i))**0.5 #pi and omega values get cancelled\n", "\n", "print \"v=\",format(v,'.2f'),\"V\"\n", "vavg=0.1*(0+5+10+20+40+50+40+20+10+5)\n", "print \"vavg=\",format(vavg,'.1f'),\"v\"\n", "ff=v/float(vavg)\n", "print ff\n", "\n", "pf=50/float(v) #50 is the maximum value\n", "print pf\n", "\n", "v=0.707*50 \n", "\n", "print \"rms value for a sin wave with the same peak value is=\",format(v,'.2f'),\"V\"\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.8:Page number-210" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "vac= 130.77 v\n", "phase position with respect to vbc=60-36.59=23.41\n" ] } ], "source": [ "import math\n", "\n", "#from phasor diagram vac=vab+vbc\n", "\n", "hcab=60\n", "vcab=60\n", "hcbc=45\n", "vcbc=77.94 #vbc=60*sin(60)\n", "\n", "p=(vcab+hcbc)**2\n", "q=vcbc**2\n", "vac=((p+q)**0.5)\n", "\n", "print \"vac=\",format(vac,'.2f'),\"v\"\n", "\n", "#the angle is given by ang=taninverse(vcbc/(vcab+hcbc))=36.59\n", "\n", "print \"phase position with respect to vbc=60-36.59=23.41\"\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.9:Page number-210" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "E1**2+2*E1*E2*cos(alpha)+E2**2=5836.96\n", "E1**2+2*E1*E2*cos(alpha)+E2**2=712.89\n", "E1=46.12V,E2=33.88V\n", "alpha=34.93\n" ] } ], "source": [ "Example 4.9:Page number-210" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.10:Page number-215" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a+b=22.72+j2.12\n", "a/b=-0.13+j0.74\n", "Thus (a+b)/(a-b) gives -0.24-j0.81\n", "(a+b*b/(a-b)*a)=-1.01+j0.5\n" ] } ], "source": [ "import math\n", "\n", "#a=6.34+j*13.59\n", "#b=20angle(35)\n", "\n", "#case a-->(a+b)\n", "\n", "#in polar form a=15 at angle 65\n", "#in rectangular form b=16.38-j*11.47\n", "\n", "#a+b=6.34+j13.59+16.38-j11.47=22.72+j2.12\n", "\n", "print \"a+b=22.72+j2.12\"\n", "\n", "#a/b=15angle(65)/20angle(-35)=0.75angle(100)=-0.13+j0.74\n", "\n", "print \"a/b=-0.13+j0.74\"\n", "\n", "#a-b=-10.04+j25.06\n", "\n", "print \"Thus (a+b)/(a-b) gives -0.24-j0.81\"\n", "\n", "#(a+b)*b/(a-b)*a\n", "\n", "print \"(a+b*b/(a-b)*a)=-1.01+j0.5\"\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.11" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "I=7.5+j4.75. Its value in polar form is obtained as 8.8776 at angle 32.34\n", "instantaneous value of resultant i is 12.5548*sin(314t+32.34)\n" ] } ], "source": [ "import math\n", "\n", "#i1=20*sin(314t+60),i2=-10*sin(314t),i3=15*sin(314t-45)-->angles are in degrees\n", "\n", "#I1=(7.7072+j12.25),I2=(-7.072),I3=7.5-j7.5\n", "\n", "#adding phasor currents I1,I2 and I3\n", "\n", "#I=7.702+j12.25-7.702+7.5-j7.5=7.5+j4.75\n", "\n", "print \"I=7.5+j4.75. Its value in polar form is obtained as 8.8776 at angle 32.34\"\n", "\n", "#i=2**0.5*8.8776*sin(314t+32.34)-->instantaneous value of resultant i\n", "\n", "print \"instantaneous value of resultant i is 12.5548*sin(314t+32.34)\"" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Example 4.12:Page number-226" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "i= 12.35 A\n", "phase angle of current=57.52 lag\n" ] } ], "source": [ "import math\n", "\n", "v=230\n", "f=50\n", "L=50*10**-3\n", "r=10\n", "\n", "#case a\n", "xl=2*3.14*f*L\n", "\n", "z=complex(r,xl)\n", "\n", "#the value of z in polar form is 18.62 ohm\n", "\n", "z=18.62\n", "\n", "i=v/float(z)\n", "\n", "print \"i=\",format(i,'.2f'),\"A\"\n", "\n", "#case b\n", "\n", "#phy=taninverse(xl/r)=57.52 lag\n", "\n", "print \"phase angle of current=57.52 lag\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.13" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "v= 279.21 V\n" ] } ], "source": [ "import math\n", "\n", "vr=150\n", "r=50\n", "l=250*10**-3\n", "f=50\n", "\n", "i=vr/r\n", "\n", "xl=2*3.14*f*l\n", "\n", "vl=i*xl\n", "\n", "v=(((vr**2)+(vl**2))**0.5)\n", "\n", "print \"v=\",format(v,'.2f'),\"V\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.14" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.6875\n", "power consumed= 500.0 w\n", "power consumed in choke oil= 187.5 W\n" ] } ], "source": [ "import math\n", "\n", "v=200\n", "f=50\n", "r=20\n", "vr=100\n", "vc=144\n", "vl=150\n", "\n", "#case a\n", "\n", "#from eqn ((vr**2+vl*cos(angle))**2)+((vl*sin(angle))**2)=v**2\n", "\n", "#on substituting values in the above eqn the value of angle can be found by isolating cos\n", "\n", "#angle=75.52\n", "\n", "cos=0.25\n", "\n", "pf=(vr+vl*cos)/float(v)\n", "\n", "print pf\n", "\n", "#case b\n", "\n", "i=vr/r\n", "power=i**2*r\n", "\n", "print \"power consumed=\",format(power,'.1f'),\"w\"\n", "\n", "#case c\n", "\n", "power=vl*i*cos\n", "\n", "print \"power consumed in choke oil=\",format(power,'.1f'),\"W\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.15:Page number-230" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " xc= 31.85 ohm\n", "i= 6.89 A\n", "0.299580587178\n", "phase angle=72.6\n", "v= 68.9 v\n", "v= 219.4 v\n" ] } ], "source": [ "import math\n", "\n", "r=10\n", "c=10**-4\n", "v=230\n", "f=50\n", "omega=314\n", "\n", "#case a\n", "xc=1/float(omega*c)\n", "\n", "print \"xc=\",format(xc,'.2f'),\"ohm\"\n", "\n", "#case b\n", "\n", "zc=33.38 #zc=10-j31.85 into polar form is 33.38\n", "\n", "i=v/zc\n", "\n", "print \"i=\",format(i,'.2f'),\"A\"\n", "\n", "#case c\n", "\n", "pf=r/zc\n", "\n", "print pf\n", "\n", "#case d\n", "\n", "#phase angle=cosinverse(0.3)=72.6\n", "\n", "print \"phase angle=72.6\"\n", "\n", "#case e\n", "\n", "v=r*i\n", "\n", "print \"v=\",format(v,'.1f'),\"v\"\n", "\n", "v=xc*i\n", "\n", "print \"v=\",format(v,'.1f'),\"v\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.16:Page number-230" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "vc= 207.12 v\n", "c= 0.00007688 F\n", "maximum voltage across c= 292.92 V\n", "phase angle=64.2\n" ] } ], "source": [ "import math\n", "\n", "v=230\n", "f=50\n", "\n", "#voltage vr across r is in phase with the current i while voltage vc across c lage i by 90\n", "\n", "#from phasor diagram v**2=vr**2+vc**2\n", "\n", "vr=100\n", "\n", "vc=((v**2)-(vr**2))**0.5\n", "\n", "print \"vc=\",format(vc,'.2f'),\"v\"\n", "p=500 #power\n", "\n", "i=p/vr\n", "\n", "c=i/float(2*3.14*f*vc)\n", "\n", "print \"c=\",format(c,'.8f'),\"F\"\n", "\n", "#case b\n", "\n", "v=(2**0.5)*vc\n", "\n", "print \"maximum voltage across c=\",format(v,'.2f'),\"V\"\n", "\n", "#case c\n", "\n", "#phase angle=cosinverse(vr/v)=cosinverse(0.4348)=64.2\n", "\n", "print \"phase angle=64.2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.17:Page number-234" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "xl= 47.1 ohm\n", "xc= 25.48 ohm\n", "complex impedance=8+j21.62 at an impedance angle of 69.7\n", "current= 9.98 A\n", "voltage across coil=446.8 at 10.66 degrees\n", "voltage across capacitor=-254.29 at -159.7 degrees\n", "phase difference between supply and current i is 69.7 lag\n" ] } ], "source": [ "import math\n", "\n", "r=8\n", "l=0.15\n", "f=50\n", "v=230\n", "c=125*10**-6\n", "\n", "#case a inductive reactance\n", "\n", "xl=2*3.14*f*l\n", "\n", "print \"xl=\",format(xl,'.1f'),\"ohm\"\n", "\n", "#case b capacitance reactance\n", "\n", "xc=1/float(2*3.14*f*c)\n", "\n", "print 'xc=',format(xc,'.2f'),\"ohm\"\n", "\n", "#case c complex impedance\n", "\n", "#z=r+j(xl-xc)-->on substituting valuees we get z=8+j21.62\n", "\n", "#z=((8**2)+(21.62**2))**0.5\n", "\n", "print \"complex impedance=8+j21.62 at an impedance angle of 69.7\"\n", "\n", "#impedance angle=taninverse(xl-xr)/r\n", "\n", "#case d\n", "\n", "v=230\n", "z=23.05\n", "i=v/z\n", "\n", "print \"current=\",format(i,'.2f'),\"A\"\n", "\n", "#case e\n", "\n", "#(r+jxl)*i=446.8 at 10.66 degrees\n", "\n", "print \"voltage across coil=446.8 at 10.66 degrees\"\n", "\n", "#-j*xc*i=25.48*9.98\n", "print \"voltage across capacitor=-254.29 at -159.7 degrees\"\n", "\n", "#case e\n", "\n", "print 'phase difference between supply and current i is 69.7 lag'\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.18:Page number-235 " ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "capacitive reactance= 63.7 ohm\n", "f= 50.0 cycles/sec\n", "power loss in iron cored choke is= 53.69 w\n" ] } ], "source": [ "import math\n", "\n", "c=50*10**-6\n", "i=2.355\n", "\n", "#case a\n", "\n", "vl=120\n", "vr=70\n", "vac=150\n", "\n", "#the phasor sum of vr and vl is OC;the applied voltage v is the phasor sum of vc and OC and is represented by OV\n", "\n", "#the theta be the impedance angle of RL combination\n", "\n", "#from right angled triangle OCD,theta can be determined as follows:\n", "#(vr+vl*costheta)**2+(vl*costheta)**2=vac**2\n", "#substitute the values then value of costheta can be found\n", "\n", "zl=vl/i #impedance of the coil\n", "\n", "p=0.981 #value of sin(79)\n", "xl=zl*p\n", "\n", "q=0.19 #value of cos(79)\n", "r=zl*q\n", "\n", "dc=i*xl\n", "bd=i*r\n", "#from right angled triangle ODB in fig.\n", "\n", "v=98.3\n", "\n", "xc=vac/i\n", "\n", "print \"capacitive reactance=\",format(xc,'.1f'),\"ohm\"\n", "\n", "f=1/float(xc*2*3.14*c)\n", "\n", "print \"f=\",format(f,'.1f'),\"cycles/sec\"\n", "\n", "ploss=i**2*r\n", "\n", "\n", "print \"power loss in iron cored choke is=\",format(ploss,'.2f'),\"w\"\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.19:Page number-238" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "i= 12.07 A\n" ] } ], "source": [ "import math\n", "\n", "r=20\n", "l=200*10**-3\n", "v=230\n", "f=50\n", "\n", "xl=314*l #314 is omega\n", "\n", "ir=v/float(r)\n", "\n", "il=v/float(xl)\n", "\n", "i=((ir**2)+(il**2))**0.5\n", "\n", "print \"i=\",format(i,'.2f'),\"A\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.20:Page number-240 " ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "current with a lead of 57.5 is obtained as= 4.13 A\n" ] } ], "source": [ "import math\n", "\n", "r=100\n", "c=50*10**-6\n", "f=50\n", "v=230\n", "\n", "#case a\n", "\n", "xc=-1/float(314*c) #314 is omega\n", "\n", "ir=v/r #with angle 0\n", "\n", "ic=230/float(xc) #with angle of 90 deg\n", "\n", "i=((ir**2)+(ic**2))**0.5\n", "\n", "print \"current with a lead of 57.5 is obtained as=\",format(i,'.2f'),\"A\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.21:Page number-242" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "current at 56.76 lead= 4.196 A\n" ] } ], "source": [ "import math\n", "\n", "r=100\n", "l=0.1\n", "c=150*10**-6\n", "v=230\n", "f=50\n", "\n", "#case a\n", "\n", "xl=314*l #at 90 deg\n", "\n", "xc=1/float(314*c) #at lag -90 deg\n", "\n", "ir=v/r #at 0 deg\n", "il=v/xl\n", "ic=v/xc\n", "\n", "#i=ir+ic+il-->2.3+j3.51\n", "\n", "i=((2.3**2)+(3.51**2))**0.5\n", "\n", "print \"current at 56.76 lead=\",format(i,'.3f'),\"A\"\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Example 4.22:Page number-244" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of zbc is 8.159-j9.553\n", "zac=18.159+j5.447(in rectangular form)\n" ] } ], "source": [ "import math\n", "\n", "z1=18.03 #z1=10+j15 converted to polar form also it is at angle 56.31\n", "z2=32.02\n", "z3=10.77\n", "\n", "#ybc=1/zbc=(1/z2+1/z3)=1/32.02+1/10.77\n", "\n", "#on performing the add operation we get the value of zbc as 8.159-j9.553 that is in rectangular form\n", "\n", "print \"The value of zbc is 8.159-j9.553\"\n", "\n", "#thus total impedance between terminals A and C is given by zac=z1+zbc\n", "\n", "print \"zac=18.159+j5.447(in rectangular form)\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.23:Page number-246" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "I= 5.76 A\n", "z= 39.91 ohm\n", "R= 36.97 ohm\n", "x= -15.03 ohm\n" ] } ], "source": [ "import math\n", "\n", "r1=25\n", "l1=0.159\n", "r2=60\n", "c=125*10**-6\n", "v=230\n", "f=50\n", "\n", "#case a\n", "\n", "xl=2*3.14*f*l1\n", "\n", "z1=((r1**2)+(xl**2))**0.5\n", "\n", "i1=v/z1\n", "\n", "#phy1=cosinverse(r1/z1)=63.43 lag\n", "\n", "xc=1/float(2*3.14**c)\n", "\n", "z2=((r2**2)+(xc**2))**0.5\n", "\n", "i2=v/z2\n", "\n", "#i2 has 23 deg lead calculated similar to i1\n", "#p=cosphy1\n", "#q=cosphy2\n", "\n", "p=0.44\n", "q=0.92\n", "I1=i1*p+i2*q\n", "a=-0.89\n", "b=0.39\n", "I2=i1*a+i2*b\n", "\n", "I=((I1**2)+(I2**2))**0.5\n", "\n", "print \"I=\",format(I,'.2f'),\"A\"\n", "\n", "#case b\n", "\n", "z=v/I\n", "\n", "print \"z=\",format(z,'.2f'),\"ohm\"\n", "\n", "R=(z*I1)/I #note the value of I in text is printed wrongly so the result may vary\n", "\n", "print \"R=\",format(R,'.2f'),\"ohm\"\n", "\n", "x=(z*I2)/I #same note applicable here as well\n", "\n", "print \"x=\",format(x,'.2f'),\"ohm\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.24:Page number-247" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "I1=6.78A\n", "I2=13.22A\n", "power loss in z1= 689.53 W\n", "power loss in z2= 1398.15 W\n" ] } ], "source": [ "import math\n", "\n", "#given\n", "#z1=15+j20\n", "#z2=8-j10\n", "I=20\n", "z1=25 #in polar form at angle 53.13\n", "z2=12.81 #at angle -51.34\n", "\n", "#v=I1z1=I2z2\n", "#I2=1.95I1\n", "\n", "#from diagram I**2=(I1cosang1+I2cosang2)**2+(I2sinang2-I1sinang1)**2\n", "#on substituting values in the above eqn and simplifying\n", "I1=6.78\n", "print \"I1=6.78A\"\n", "I2=13.22\n", "#substitute this in I2=1.95I1\n", "\n", "print \"I2=13.22A\"\n", "\n", "pow1=I1**2*15\n", "pow2=I2**2*8\n", "\n", "print \"power loss in z1=\",format(pow1,'.2f'),\"W\"\n", "print \"power loss in z2=\",format(pow2,'.2f'),\"W\"\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.25:Page number-248" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "i1= 7.19 A\n", "current lags by voltage 38.66\n", "c= 0.00006218 F\n", "ir= 5.606 A\n" ] } ], "source": [ "import math\n", "\n", "r=25\n", "f=50\n", "xl=20\n", "v=230\n", "\n", "#case a\n", "\n", "#z1=r+jxl\n", "\n", "z1=32 #in polar form\n", "i1=v/float(z1)\n", "\n", "print \"i1=\",format(i1,'.2f'),'A'\n", "\n", "#case b\n", "\n", "print \"current lags by voltage 38.66\"\n", "\n", "#case c\n", "\n", "p=0.78 #cos value\n", "q=-0.62 #sin value\n", "\n", "ir=i1*p\n", "il=i1*q\n", "\n", "#from phasor diagram current c is equal to il\n", "\n", "ic=il=4.491\n", "\n", "c=ic/float(v*2*3.14*50)\n", "\n", "print \"c=\",format(c,'.8f'),\"F\"\n", "\n", "#case d\n", "\n", "print \"ir=\",format(ir,'.3f'),\"A\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.26:Page number-249" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(12.9596827495-2.78255122274j)\n", "the phase angle is -12.11\n" ] } ], "source": [ "import math\n", "\n", "z1=complex(6,-10)\n", "z2=complex(10,15)\n", "z3=complex(18,12)\n", "\n", "#z1+z2 is parallel to z3\n", "\n", "zab=z1+(z2*z3)/(z2+z3)\n", "\n", "print zab\n", "\n", "print \"the phase angle is -12.11\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.27:Page number-258" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "current at -63 lag is= 13.05 A\n", "phase angle between supply voltage and current is -63\n", "power= 3002.3 VA\n", "active power= 1351.0 W\n", "reactive power= 2672.0 VAR\n" ] } ], "source": [ "import math\n", "\n", "r=8\n", "l=0.05\n", "v=230\n", "f=50\n", "\n", "#case a\n", "\n", "xl=2*3.14*f*l\n", "\n", "zl=complex(r,xl)\n", "\n", "zl=17.62\n", "\n", "i=v/zl #since v=230 at angle 0 and zl in polar form has 63 deg i has a lag of 63\n", "\n", "print \"current at -63 lag is=\",format(i,'.2f'),'A'\n", "\n", "#case b\n", "\n", "print \"phase angle between supply voltage and current is -63\"\n", "\n", "#case c\n", "\n", "power=v*i\n", "\n", "print \"power=\",format(power,'.1f'),\"VA\"\n", "\n", "#case d\n", "p=0.45 #cos63\n", "actpow=v*i*p\n", "print \"active power=\",format(actpow,'.1f'),\"W\"\n", "\n", "#case e\n", "\n", "q=0.89 #sin63\n", "\n", "reapow=v*i*q\n", "\n", "print 'reactive power=',format(reapow,'.1f'),\"VAR\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.28:Page number-259" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input= 13392.86 VA\n", "active component= 40.76 A\n", "reactive component= 41.34 A\n", "reactive power= 9508.9 VAR\n", "c= 0.00006218 F\n" ] } ], "source": [ "import math\n", "\n", "v=230\n", "f=50\n", "pf=0.7\n", "n=0.8\n", "op=7500\n", "\n", "#case a\n", "\n", "ip=op/float(0.7*0.8)\n", "\n", "print \"input=\",format(ip,'.2f'),\"VA\"\n", "\n", "#case b\n", "\n", "im=ip/v\n", "\n", "p=0.71 #sin\n", "\n", "activecompo=im*pf\n", "\n", "print \"active component=\",format(activecompo,'.2f'),\"A\"\n", "\n", "reacompo=p*im\n", "\n", "print \"reactive component=\",format(reacompo,'.2f'),\"A\"\n", "\n", "#case c\n", "\n", "reacpow=p*ip\n", "\n", "print \"reactive power=\",format(reacpow,'.1f'),\"VAR\"\n", "\n", "#case d\n", "\n", "cos=0.95\n", "\n", "i=activecompo/cos\n", "\n", "isin=13.40 #i*sinang=i*(1-cos**2)**0.5ic=28.18 #since i=ic+im\n", "\n", "c=ic/float(2*3.14*f*v)\n", "\n", "print \"c=\",format(c,'.8f'),\"F\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.29:Page number-266" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "c= 0.00004057\n", "i= 115.0 A\n", "39.25\n" ] } ], "source": [ "import math\n", "\n", "#case a\n", "\n", "l=0.25\n", "f=50\n", "v=230\n", "r=2\n", "\n", "c=1/float(((2*3.14*f)**2)*l)\n", "\n", "print \"c=\",format(c,'.8f')\n", "\n", "#case b\n", "\n", "i=v/r\n", "\n", "print \"i=\",format(i,'.1f'),\"A\"\n", "\n", "#case c\n", "\n", "vl=2*3.14*f*l*i\n", "vc=i/float(c*2*3.14*f)\n", "\n", "q=(2*3.14*f*l)/float(r)\n", "\n", "print q" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.30:Page number-266" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "f0= 102.0860 Hz\n", "f1= 101.2898 Hz\n", "f2= 102.8822 Hz\n" ] } ], "source": [ "import math\n", "\n", "l=10\n", "r=100\n", "i=1\n", "f=100\n", "i1=0.5\n", "\n", "c=1/float(4*(3.14**2)*(r**2)*l)\n", "\n", "v=i*r\n", "z=v/i1\n", "\n", "#z=100+jX\n", "\n", "x=((200**2)-(100**2))**0.5\n", "\n", "omega=641.1 #angular frequency in rad/sec\n", "\n", "f0=omega/float(2*3.14)\n", "\n", "f1=f0-(r/float(4*3.14*l))\n", "\n", "f2=f0+(r/float(4*3.14*l))\n", "\n", "print \"f0=\",format(f0,'.4f'),\"Hz\"\n", "\n", "print \"f1=\",format(f1,'.4f'),\"Hz\"\n", "\n", "print \"f2=\",format(f2,'.4f'),\"Hz\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.31:Page number-271 " ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "l= 0.00507 H\n" ] } ], "source": [ "import math\n", "\n", "v=3*10**8\n", "lamb=3000\n", "c=0.0005*10**-6\n", "f=v/lamb\n", "\n", "l=1/float(4*3.14*3.14*f**2*c)\n", "\n", "print \"l=\",format(l,'.5f'),\"H\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.32:Page number-272" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "c= 0.0000000005599 F\n", "z= 238130.4 ohm\n", "i= 0.0000063 A\n" ] } ], "source": [ "import math\n", "\n", "r=1500\n", "l=0.2\n", "v=1.5\n", "f=15000\n", "\n", "#case a\n", "\n", "#p=1/0.2c\n", "\n", "p=(4*3.14*3.14*f**2)+(r**2)/float(l**2)\n", "\n", "c=1/float(0.2*p)\n", "\n", "print \"c=\",format(c,'.13f'),\"F\"\n", "\n", "#case b\n", "\n", "z=l/float(c*r)\n", "\n", "print \"z=\",format(z,'.1f'),\"ohm\"\n", "\n", "#case c\n", "\n", "i=v/float(z)\n", "\n", "print \"i=\",format(i,'.7f'),\"A\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.33:Page number-274" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "v1 at -47.63 is= 18.80 V\n", "v2 at -42.30 is= 21.55 V\n" ] } ], "source": [ "import math\n", "\n", "#the eqns are formed using the given diagram\n", "#the derivations from the eqns are obtained as below using matrices for their construction\n", "#the below eqns are in polar form\n", "delta=0.3165\n", "delta1=5.95\n", "delta2=6.82\n", "\n", "v1=delta1/delta\n", "\n", "print \"v1 at -47.63 is=\",format(v1,'.2f'),\"V\"\n", "\n", "v2=delta2/delta\n", "\n", "print \"v2 at -42.30 is=\",format(v2,'.2f'),\"V\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.34:Page number-275 " ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "i at -84.21 is= -1.32 V\n" ] } ], "source": [ "import math\n", "\n", "#in polar form\n", "\n", "z1=10\n", "z2=12.806\n", "z3=13.416\n", "\n", "#the mesh currents are written in matrix form\n", "\n", "delta=329.31 #in polar form\n", "\n", "delta1=360\n", "delta2=793.22\n", "\n", "i1=delta1/delta\n", "i2=delta2/delta\n", "\n", "i=i1-i2 #answer obtained in text is wrongly printed\n", "\n", "print \"i at -84.21 is=\",format(i,'.2f'),\"V\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.35:Page number-276 " ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(1.638+4.839j)\n", "(0.732-5.144j)\n", "(2.37-0.305j)\n" ] } ], "source": [ "import math\n", "\n", "#superposition theorem\n", "\n", "r=4\n", "\n", "#z=4+(8+6j)*(0-j10)/8+j6+0-j10\n", "\n", "#z=14-j5\n", "\n", "z=14.87\n", "l=40\n", "#I1a=z/l=2.69 in polar form\n", "I1a=complex(2.533,0.904)\n", "\n", "I2a=complex(-0.324,-2.67)\n", "\n", "\n", "#from fig c\n", "\n", "z=complex(2.93,-9.47)\n", "\n", "I1b=complex(-0.895,3.935)\n", "\n", "I2b=complex(1.056,-2.474)\n", "\n", "I1=I1a+I1b\n", "\n", "print I1\n", "\n", "I2=I2a+I2b\n", "\n", "print I2\n", "\n", "I=I1+I2\n", "\n", "print I" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.36:Page number-278" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(3.07692307692+5.38461538462j)\n", "(8.81695846645+9.55403833866j)\n" ] } ], "source": [ "import math\n", "\n", "#thevenin's theorem\n", "#all the values are derived from the figures\n", "z1=complex(8,-6)\n", "z2=complex(0,5)\n", "\n", "zth=(z1*z2)/(z1+z2)\n", "\n", "print zth\n", "\n", "vth=complex(-17.71,141.54)\n", "\n", "zload=complex(4,3)\n", "\n", "I=vth/(zth+zload)\n", "\n", "print I" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.37:Page number-279" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(8.8178913738+9.55271565495j)\n" ] } ], "source": [ "import math\n", "\n", "#norton's theorem\n", "\n", "#values derived and calculated from figure\n", "\n", "v=complex(230,0)\n", "xl=complex(8,-6)\n", "\n", "isc=v/xl\n", "\n", "IN=isc\n", "\n", "rl=complex(0,5)\n", "zn=(rl*xl)/(rl+xl)\n", "zload=complex(4,3)\n", "\n", "I=(IN*zn)/(zn+zload)\n", "\n", "print I" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.38:Page number-281" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "I= 4.51 A\n", "pl= 18.75 w\n" ] } ], "source": [ "import math\n", "\n", "#all values derived from figure\n", "\n", "\n", "#zth=complex(0.923,2.615)\n", "\n", "#vth=complex(-4.615,-6.923) #derived using formula\n", "\n", "#zl=complex(0.923,-2.615)\n", "\n", "#z=zl+zth\n", "vth=8.32 #polar form\n", "z=1.846\n", "I=vth/z\n", "\n", "print \"I=\",format(I,'.2f'),\"A\"\n", "\n", "rl=0.923\n", "pl=(I**2)*rl\n", "\n", "print \"pl=\",format(pl,'.2f'),\"w\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }