{ "metadata": { "name": "", "signature": "sha256:0abcc423492072a54fb770a61520bf727ac4ace788fa5f2dbb0a6db0caff8ec2" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter10-Flow with free surfaces" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg436" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate The depth of the water under the brigde and the depth of water upstream\n", "Q=400.; ## m^3/s\n", "b2=20.; ## m\n", "g=9.81; ## m/s^2\n", "b1=25.; ## m\n", "\n", "h2=(Q/b2/math.sqrt(g))**(2./3.);\n", "## Since energy is conserved\n", "## h1 + u1^2/2g = h2 +u2^2/2g = h2 + h2/2 = 3h2/2\n", "\n", "## h1 + 1/2*g*(Q/(b1h1))^2 = 3*h2/2;\n", "\n", "## h1^3-5.16*h1^2+13.05 = 0;\n", "\n", "## By solving this cubic equation\n", "\n", "h1=4.52; ## m\n", "\n", "print'%s %.1f %s'%(\" The depth of the water under the brigde =\",h2,\"m\")\n", "\n", "\n", "print'%s %.2f %s'%(\" the depth of water upstream =\",h1,\"m\")\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The depth of the water under the brigde = 3.4 m\n", " the depth of water upstream = 4.52 m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg447" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate Rate of flow \n", "w=0.04; ## thickness of block in m\n", "d=0.07; ## depth of liquid in m\n", "b=0.4; ## m\n", "g=9.81; ## m/s^2\n", "\n", "H=d-w; \n", "\n", "Q=1.705*b*H**(3/2.);\n", "\n", "u1=Q/d/b;\n", "h=u1**2/(2.*g);\n", "\n", "H1=H+h;\n", "\n", "Q1=1.705*b*H1**(3/2.);\n", "\n", "print'%s %.4f %s'%(\"Rate of flow =\",Q1,\" m^3/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rate of flow = 0.0037 m^3/s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg455" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate depth of water at the throat and the new flow rate and the Froude number at the throat and flow rate\n", "h1=0.45; ## m\n", "g=9.81; ## m/s^2\n", "b1=0.8; ## m\n", "h2=0.35; ## m\n", "b2=0.3; ## m\n", "print(\"the flow rate\")\n", "Q=math.sqrt((h1-h2)*2*g/(-(1./(h1*b1)**2)+(1./(h2*b2)**2)));\n", "print'%s %.3f %s'%(\"Flow rate =\",Q,\"m^3/s\")\n", "\n", "\n", "print(\" the Froude number at the throat\")\n", "Fr2=Q/(math.sqrt(g)*b2*h2**(3/2.));\n", "print'%s %.3f %s'%(\"The Froude number at the throat =\",Fr2,\"\")\n", "\n", "\n", "print(\"the depth of water at the throat\")\n", "\n", "## (h1/h2)^(3) + 1/2*(b2/b1)^2 = 3/2*(h1/h2)^2\n", "\n", "## The solution for the above eqn is as follows\n", "## (h1/h2) = 0.5 + cos(2arcsin(b2/b1)/3)\n", "\n", "## h1/h2=1.467\n", "\n", "h2_new=h1/1.467;\n", "print'%s %.3f %s'%(\"Depth of water at the throat =\",h2_new,\"m\")\n", "\n", "print(\"the new flow rate\")\n", "w=math.sqrt(g)*b2*h2_new**(3/2.);\n", "print'%s %.3f %s'%(\"New flow rate =\",Q,\"m^3/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the flow rate\n", "Flow rate = 0.154 m^3/s\n", " the Froude number at the throat\n", "The Froude number at the throat = 0.790 \n", "the depth of water at the throat\n", "Depth of water at the throat = 0.307 m\n", "the new flow rate\n", "New flow rate = 0.154 m^3/s\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg460" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate depth\n", "Q=8.75; ## m^3/s\n", "w=5.; ## m\n", "n=0.0015; \n", "s=1./5000.;\n", "\n", "## Q/(w*h0) = u = m^(2/3)*i^(1/2)/n = 1/0.015*(w*h0/(w+2*h0))^(2/3)*sqrt(s);\n", "## Solution by trial gives h0\n", "h0=1.8; ## m\n", "\n", "q=1.75;\n", "g=9.81;\n", "hc=(q**2/g)**(1/3); ## critical depth\n", "\n", "print'%s %.1f %s'%(\"Depth =\",h0,\"m\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Depth = 1.8 m\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg469" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate wave length\n", "g=9.81; ## m/s^2\n", "T=5.; ## s\n", "h=4.; ## m\n", "\n", "## lambda=g*T^2/(2*%pi)*tanh(2*%pi*h/lambda1);\n", "## by trial method , we get \n", "lambda1=28.04;\n", "\n", "D=g*T**2/(2*math.pi)*math.tanh(2*math.pi*h/lambda1);\n", "print'%s %.1f %s'%(\"Wavelength =\",D,\"m\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength = 27.9 m\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "EX6-pg470" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate phase velocity and wave length\n", "g=9.81; ## m/s^2\n", "T=12; ## s\n", "\n", "c=g*T/(2*math.pi);\n", "\n", "D=c*T;\n", "\n", "print\"%s %.1f %s\"%(\"Phase velocity =\",c,\"m/s\")\n", "\n", "\n", "print\"%s %.1f %s\"%(\"Wavelength =\",D,\"m\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Phase velocity = 18.7 m/s\n", "Wavelength = 224.8 m\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg476" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Estimate the time elapsed since the waves were generated in a storm occurring 800 km out to sea and Estimate the depth at which the waves begin to be significantly influenced by the sea bed as they approach the shore\n", "c=18.74; ## m/s\n", "lambd=225.; ## m\n", "\n", "print(\"Estimate the time elapsed since the waves were generated in a storm occurring 800 km out to sea. \")\n", "\n", "x=800.*10**3.; ## m\n", "cg=c/2.;\n", "\n", "t=x/cg;\n", "\n", "print\"%s %.1f %s\"%(\"time elapsed =\",t/3600.,\"hours\")\n", "\n", "\n", "print(\"Estimate the depth at which the waves begin to be significantly influenced by the sea bed as they approach the shore.\")\n", "\n", "h1=lambd/2.;\n", "\n", "h2=lambd/(2.*math.pi)*math.atanh(0.99);\n", "\n", "print\"%s %.1f %s %.1f %s\"%(\"The answers show that h lies in the range between about\",h2,\"m , \",h1, \"m\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Estimate the time elapsed since the waves were generated in a storm occurring 800 km out to sea. \n", "time elapsed = 23.7 hours\n", "Estimate the depth at which the waves begin to be significantly influenced by the sea bed as they approach the shore.\n", "The answers show that h lies in the range between about 94.8 m , 112.5 m\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }