{ "metadata": { "name": "MP-15" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": "The General Theory of Relativity" }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 15.1 Page 491" }, { "cell_type": "code", "collapsed": false, "input": "#initiation of variable\nw=121.5; #lambeda\nG=6.67*10**-11; #Various given values and constants\nM= 1.99*10**30; \nR= 6.96*10**8;\nc=3*10**8;\n\n#calculation\nk= G*M/(R*c**2); #(delLambeda)/(lambeda)\ndelw=k*w; #del(lambeda)\n\n#result\nprint \"The change in wavelength due to gravitational shift in pm is\",round(delw*10**3,3);\n\n#part3\nk=5.5*10**-5;#due to thermal Doppler broadening effect\ndelw=k*w;\n\n#result\nprint \"The change in wavelength due to thermal Doppler broadening effect in pm is\",round(delw*10**3,3);", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": " The change in wavelength due to gravitational shift in pm is 0.257\nThe change in wavelength due to thermal Doppler broadening effect in pm is 6.683\n" } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 15.2 Page 501" }, { "cell_type": "code", "collapsed": false, "input": "#initiation of variable\nmp=938.280; #mass of various particles\nme=0.511;\nm2h=1875.628;\n\n#calculation\nmic2=2*mp; #mass energy on L.H.S\nmfc2=m2h+me; #mass energy on R.H.S\nQ=mic2-mfc2; #Q value of reation\npc=Q;\nmc2=1875.628;\nK=(pc**2)/(2*mc2); #kinetic threshold energy\nEmax=Q-K; #maximum energy \n\n#result\nprint \"The maximum neutrino energy in MeV is\",round(Emax,3);", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "The maximum neutrino energy in MeV is 0.421\n" } ], "prompt_number": 3 } ], "metadata": {} } ] }