{ "metadata": { "name": "", "signature": "sha256:95b9e0f83468dda84f2de4d99c5a704a6fadf8064c232b063678fd245192ca75" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter2 - Measurement Errors" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3.1 - page : 2-8" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#precision of the 5th measurement\n", "#given data :\n", "X1=98.0 \n", "X2=101.0\n", "X3=102.0 \n", "X4=97.0 \n", "X5=101.0 \n", "X6=100.0 \n", "X7=103.0 \n", "X8=98.0 \n", "X9=106.0 \n", "X10=99.0 \n", "Xn_bar=(X1+X2+X3+X4+X5+X6+X7+X8+X9+X10)/10 \n", "Xn=101 # value of 5th measurement\n", "P=(1-abs((Xn-Xn_bar)/Xn_bar))*100 \n", "print \"Precision of the 5th measurement, P = \", round(P,2), \" %\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Precision of the 5th measurement, P = 99.5 %\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3.2.i - page : 2-10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Absolute error\n", "#given data :\n", "Ae=80.0 # in V\n", "Am=79.0 # in V\n", "e=Ae-Am \n", "print \"Absolute error, e = \", e, \" V\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Absolute error, e = 1.0 V\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3.2.ii - page : 2-10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Error\n", "#given data :\n", "Ae=80.0 # in V\n", "Am=79.0 # in V\n", "e=Ae-Am \n", "error1=(e/Ae)*100 \n", "print \"Error = \", error1, \" %\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Error = 1.25 %\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3.2.iii - page : 2-10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Relative accuracy\n", "#given data :\n", "Ae=80.0 # in V\n", "Am=79.0 # in V\n", "e=Ae-Am \n", "error1=(e/Ae)*100 \n", "A=(1-abs(e/Ae)) \n", "print \"Relative Accuracy, A = \", A" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Relative Accuracy, A = 0.9875\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3.2.iv - page : 2-10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# % accuracy\n", "#given data :\n", "Ae=80.0 # in V\n", "Am=79.0 # in V\n", "e=Ae-Am \n", "error1=(e/Ae)*100 \n", "A=(1-abs(e/Ae)) \n", "accuracy=A*100 \n", "print \"Accuracy = \", accuracy, \" %\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Accuracy = 98.75 %\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3.2.v - page : 2-10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# % error\n", "#given data :\n", "Ae=80.0 # in V\n", "Am=79.0 # in V\n", "e=Ae-Am \n", "f=100.0 #full scale deflection\n", "error1=(e/Ae)*100 \n", "A=(1-abs(e/Ae)) \n", "accuracy=A*100 \n", "P_error=(e/f)*100 \n", "print \"% error = \", P_error, \" %\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "% error = 1.0 %\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3.3 - page : 2-11" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Maximum error\n", "#given data :\n", "V1=100.0 # in V\n", "V2=200.0 #in V\n", "V=V2-V1 \n", "A=0.25 #may be \u00b1 in %\n", "max_error=(A/100)*V \n", "print \"Maximum error = \u00b1 \", max_error, \" V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum error = \u00b1 0.25 V\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3.4 - page : 2-12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# sensitivity and deflection error\n", "#given data :\n", "C=4.0 # change in output in mm\n", "M=8.0 # magnitude of input in ohm\n", "S=C/M \n", "print \"sensitivity, S = \", S, \" mm/ohm\"\n", "D=M/C \n", "print \"Deflection factor, D = \", D, \" ohm/mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "sensitivity, S = 0.5 mm/ohm\n", "Deflection factor, D = 2.0 ohm/mm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3.5 - page : 2-14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Resolution\n", "#given data :\n", "V=200.0 # full scale reading in V\n", "N=100.0 # number of divisions \n", "Scale_div=V/N \n", "R=(1.0/10)*Scale_div \n", "print \"Resolution, R = \", R, \" V\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resolution, R = 0.2 V\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3.6 - page : 2-14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Resolution\n", "#given data :\n", "V=9.999 # full scale read out in volt\n", "c=9999.0 # range from 0 to 9999\n", "R=(1/c)*V*10**3 \n", "print \"Resolution, R = \", R, \" mV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resolution, R = 1.0 mV\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6.1 - page : 2-23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Magnitude and relative error\n", "#given data :\n", "R1=15.0 #ohm\n", "E1=R1*5.0/100 # \u00b1 limiting error for R1\n", "R2=33.0 #ohm\n", "E2=R2*2.0/100 # \u00b1 limiting error for R2\n", "R3=75.0 #ohm\n", "E3=R3*5.0/100 # \u00b1 limiting error for R3\n", "RT=R1+R2+R3 # ohm(in series)\n", "ET=E1+E2+E3 #\u00b1limiting error for RT\n", "print \"For series connection, magnitude is \", RT, \" ohm & limiting error is \u00b1 \", ET, \" ohm.\" \n", "Epr=ET/RT*100 #%\n", "print \"Percent relative error : \u00b1\", round(Epr,1),\" %\" \n", "\n", "# Answer is not accurate in the textbook." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "For series connection, magnitude is 123.0 ohm & limiting error is \u00b1 5.16 ohm.\n", "Percent relative error : \u00b1 4.2 %\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6.2 - page : 2-23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Magnitude and relative error\n", "#given data :\n", "R1=36.0 #ohm\n", "E1=5.0 # \u00b1 limiting error for R1\n", "R2=75.0 #ohm\n", "E2=5.0 # \u00b1 limiting error for R2\n", "RT=(R1*R2)/(R1+R2) #ohm(in parallel)\n", "EP1=E1+E2 # \u00b1 limiting error\n", "EP2=((R1*E1)/(R1+R2))+((R2*E2)/(R1+R2)) \n", "ET=EP1+EP2 \n", "etm=(ET/100)*RT \n", "print \"Magnitude of limiting error is \u00b1\", round(etm,2), \" ohm\"\n", "print \"Percentage relative error is \u00b1\", ET, \" %\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Magnitude of limiting error is \u00b1 3.65 ohm\n", "Percentage relative error is \u00b1 15.0 %\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6.3 page : 2-24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Limiting error\n", "vr=40.0 #reading of voltmeter in volts\n", "v=50.0 #rane in volts\n", "va=50.0 #ammeeter reading in mA\n", "i=125.0 #range in mA\n", "fsd=2.0 #accurace in percentage in \u00b1\n", "dv=(2.0/100)*v #limiting error of voltmeter\n", "da=(2./100)*i #liming error of the ammeter in mA\n", "erv=dv/vr #relative limiting error in voltmeter reading\n", "eri=da/i #relative limiting error in ammeter reading\n", "et=erv+eri \n", "pet=et*100 #percentage limiting error of the power calcultaed\n", "print \"Percentage limiting error of the power calcultaed is \u00b1 \",pet,\" %\"\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percentage limiting error of the power calcultaed is \u00b1 4.5 %\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6.4 - page : 2-25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# limiting error\n", "r1=120.0 # ohm\n", "er1=0.5 #limiting error in resistance 1 in ohm \u00b1\n", "r2=2 #in A\n", "er2=0.02 #limiting error in amperes \u00b1\n", "e1=er2/r2 #limiting error in current\n", "e2=er1/r1 #limiting eror in resistance\n", "et=(2*e1+e2) #total error\n", "etp=et*100 #percentage limtimg error\n", "print \"Percentage limiting error in the value of power dissipation is \u00b1\",round(etp,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percentage limiting error in the value of power dissipation is \u00b1 2.417\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6.5 - page : 2-25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#magnitude and limiting error\n", "r1=120 #in ohm\n", "er1=0.1 #limiting error in resistance 1 in ohm \u00b1\n", "r2=2700 #in ohm\n", "er2=0.5 #limiting error in resistance 2 in ohm \u00b1\n", "r3=470 #in ohm\n", "er3=0.5 #limiting error in resistance 3 in ohm \u00b1\n", "rxm=(r2*r3)/r1 #magnitude of unknown resistance in ohm\n", "rxe=(er1+er2+er3) #error\n", "er=(rxe*rxm)/100 #relative error \u00b1\n", "print \"Magnitude of unknown resistance is \",rxm,\" kohm\"\n", "print \"Relative limiting error is \u00b1\",er,\" ohm\"\n", "print \"Guranteed value of resistance is between \",rxm-er, \" ohm to \" ,rxm+er,\" ohm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Magnitude of unknown resistance is 10575 kohm\n", "Relative limiting error is \u00b1 116.325 ohm\n", "Guranteed value of resistance is between 10458.675 ohm to 10691.325 ohm\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6.6 - page : 2-26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# absolute error, % error, relative error, % accuracy and % error of full scale reading\n", "#given data :\n", "Ae=80.0 # in volt\n", "Am=79 # in volt\n", "fsd=100 #full scale reading in volt\n", "e=Ae-Am \n", "print \"Absolute error, e = \",e,\" V\"\n", "error1=(e/Ae)*100 \n", "print \"Error = \",error1,\" %\"\n", "A=1-abs(e/Ae) \n", "print \"Relative accuracy, A = \",A,\" %\"\n", "p_accuracy=A*100 \n", "print \"% accuracy = \",p_accuracy,\" %\"\n", "error2=(e/fsd)*100 \n", "print \"% error expressed as percentage of full scale reading = \",error2,\" %\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Absolute error, e = 1.0 V\n", "Error = 1.25 %\n", "Relative accuracy, A = 0.9875 %\n", "% accuracy = 98.75 %\n", "% error expressed as percentage of full scale reading = 1.0 %\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6.7 - page : 2-27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# limiting error\n", "#given data :\n", "fsd=100.0 # in V\n", "A=1.0 # (+ve or -ve) in %\n", "del_A=(A/100)*fsd \n", "As=15.0 #in V\n", "e1=del_A/As \n", "e=e1*100 \n", "print \"Limiting error, e = \",round(e,4),\" %\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Limiting error, e = 6.6667 %\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6.8 - page : 2-27 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# limiting value of current and % limiting error\n", "#given data :\n", "As=2.5 # in A\n", "fsd=10 #full scale reading in A\n", "A=1.5/100 \n", "del_A=A*fsd \n", "At1=As+del_A \n", "At2=As-del_A \n", "print \"Limiting value of current, At1 = \",At1,\" A\"\n", "print \"Limiting value of current, At2 = \",At2,\" A\"\n", "e=(del_A/As)*100 \n", "print \"Percentage limiting error, e = \",e,\" %\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Limiting value of current, At1 = 2.65 A\n", "Limiting value of current, At2 = 2.35 A\n", "Percentage limiting error, e = 6.0 %\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.1.i - page : 2-30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#ARITHEMATIC MEAN\n", "import numpy\n", "q=[49.7,50.1,50.2,49.6,49.7] #\n", "AM= numpy.mean(q) #arithematic mean in mm\n", "print \"Arithematic mean is \",AM\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Arithematic mean is 49.86\n" ] } ], "prompt_number": 57 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.1.ii - page : 2-30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#deviation\n", "import numpy\n", "q=[49.7,50.1,50.2,49.6,49.7] #\n", "AM= numpy.mean(q) #arithematic mean in mm\n", "d=q-AM\n", "print \"Deviations of each value are : \"\n", "for dev in d:\n", " print dev\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Deviations of each value are : \n", "-0.16\n", "0.24\n", "0.34\n", "-0.26\n", "-0.16\n" ] } ], "prompt_number": 58 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.1.iii - page : 2-30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#algebric sum of deviation\n", "import numpy\n", "q=[49.7,50.1,50.2,49.6,49.7] #\n", "AM= numpy.mean(q) #arithematic mean in mm\n", "d=q-AM\n", "dtotal=sum(d)\n", "print \"Algebric sum of deviation is\", round(dtotal,4)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Algebric sum of deviation is 0.0\n" ] } ], "prompt_number": 59 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.1.iv - page : 2-30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#standard deviation\n", "import numpy\n", "q=[49.7,50.1,50.2,49.6,49.7] #\n", "AM= numpy.mean(q) #arithematic mean in mm\n", "d=q-AM\n", "sigma=0\n", "n=5 # no. of measurements\n", "for dev in d:\n", " sigma+=dev**2\n", "sigma/=(n-1)\n", "sigma**=(1.0/2)\n", "print \"Standard Deviation is \",round(sigma,2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Standard Deviation is 0.27\n" ] } ], "prompt_number": 60 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.2.i - page : 2-31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#ARITHEMATIC MEAN\n", "import numpy\n", "q=[101.2,101.4,101.7,101.3,101.3,101.2,101.0,101.3,101.5,101.1] #\n", "AM= numpy.mean(q) #arithematic mean in mm\n", "print \"Arithematic mean is \",AM,\" V\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Arithematic mean is 101.3 V\n" ] } ], "prompt_number": 61 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.2.ii - page : 2-31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Deviation from mean\n", "import numpy\n", "q=[101.2,101.4,101.7,101.3,101.3,101.2,101.0,101.3,101.5,101.1] #\n", "AM= numpy.mean(q) #arithematic mean in mm\n", "d=q-AM\n", "print \"Deviations of each value are : \"\n", "for dev in d:\n", " print dev\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Deviations of each value are : \n", "-0.1\n", "0.1\n", "0.4\n", "0.0\n", "0.0\n", "-0.1\n", "-0.3\n", "0.0\n", "0.2\n", "-0.2\n" ] } ], "prompt_number": 62 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.2.iii - page : 2-31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#standard deviation\n", "import numpy\n", "q=[101.2,101.4,101.7,101.3,101.3,101.2,101.0,101.3,101.5,101.1] \n", "AM= numpy.mean(q) #arithematic mean in mm\n", "d=q-AM\n", "sigma=0\n", "n=10 # no. of measurements\n", "for dev in d:\n", " sigma+=dev**2\n", "sigma/=(n-1)\n", "sigma**=(1.0/2)\n", "print \"Standard Deviation is \",round(sigma,2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Standard Deviation is 0.2\n" ] } ], "prompt_number": 63 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.2.iv - page : 2-31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#probable error\n", "import numpy\n", "q=[101.2,101.4,101.7,101.3,101.3,101.2,101.0,101.3,101.5,101.1] \n", "AM= numpy.mean(q) #arithematic mean in mm\n", "d=q-AM\n", "sigma=0\n", "n=10 # no. of measurements\n", "for dev in d:\n", " sigma+=dev**2\n", "sigma/=(n-1)\n", "sigma**=(1.0/2)\n", "pe1=0.6745*sigma # Probable error of one reading\n", "print \"Probable error of one reading is \",pe1,\" V\"\n", "pm=pe1/(n-1)**(1.0/2)\n", "print \"Probable error of mean is \",round(pm,5)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Probable error of one reading is 0.1349 V\n", "Probable error of mean is 0.04497\n" ] } ], "prompt_number": 64 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.3.i - page : 2-32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Arithmetic mean\n", "#given data :\n", "X1=147.2 # in nF\n", "X2=147.4 # in nF\n", "X3=147.9 # in nF\n", "X4=148.1 # in nF\n", "X5=148.1 # in nF\n", "X6=147.5 # in nF\n", "X7=147.6 # in nF\n", "X8=147.4 # in nF\n", "X9=147.6 # in nF\n", "X10=147.5 # in nF\n", "AM=(X1+X2+X3+X4+X5+X6+X7+X8+X9+X10)/10 \n", "print \"Arithmetic mean, AM = \",AM,\" nF\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Arithmetic mean, AM = 147.63 nF\n" ] } ], "prompt_number": 77 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.3.ii - page : 2-32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Average deviation\n", "#given data :\n", "n=10 \n", "X1=147.2 # in nF\n", "X2=147.4 # in nF\n", "X3=147.9 # in nF\n", "X4=148.1 # in nF\n", "X5=148.1 # in nF\n", "X6=147.5 # in nF\n", "X7=147.6 # in nF\n", "X8=147.4 # in nF\n", "X9=147.6 # in nF\n", "X10=147.5 # in nF\n", "AM=(X1+X2+X3+X4+X5+X6+X7+X8+X9+X10)/n \n", "d1=X1-AM \n", "d2=X2-AM \n", "d3=X3-AM \n", "d4=X4-AM \n", "d5=X5-AM \n", "d6=X6-AM \n", "d7=X7-AM \n", "d8=X8-AM \n", "d9=X9-AM \n", "d10=X10-AM \n", "Average_deviation=(abs(d1)+abs(d2)+abs(d3)+abs(d4)+abs(d5)+abs(d5)+abs(d6)+abs(d7)+abs(d8)+abs(d9)+abs(d10))/n \n", "print \"Average deviation = \",Average_deviation,\" nF\"\n", "# answer is wrong in book" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Average deviation = 0.289 nF\n" ] } ], "prompt_number": 79 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.3.iii - page : 2-32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Standard deviation\n", "#given data :\n", "n=10 \n", "X1=147.2 # in nF\n", "X2=147.4 # in nF\n", "X3=147.9 # in nF\n", "X4=148.1 # in nF\n", "X5=148.1 # in nF\n", "X6=147.5 # in nF\n", "X7=147.6 # in nF\n", "X8=147.4 # in nF\n", "X9=147.6 # in nF\n", "X10=147.5 # in nF\n", "AM=(X1+X2+X3+X4+X5+X6+X7+X8+X9+X10)/n \n", "d1=X1-AM \n", "d2=X2-AM \n", "d3=X3-AM \n", "d4=X4-AM \n", "d5=X5-AM \n", "d6=X6-AM \n", "d7=X7-AM \n", "d8=X8-AM \n", "d9=X9-AM \n", "d10=X10-AM \n", "sigma=((d1**2+d2**2+d3**2+d4**2+d5**2+d6**2+d7**2+d8**2+d9**2+d10**2)/(n-1))**(1.0/2) \n", "print \"Standard deviation = \",round(sigma,4),\" nF\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Standard deviation = 0.3057 nF\n" ] } ], "prompt_number": 82 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.3.iv - page : 2-32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#: Probable error\n", "#given data :\n", "n=10 \n", "X1=147.2 # in nF\n", "X2=147.4 # in nF\n", "X3=147.9 # in nF\n", "X4=148.1 # in nF\n", "X5=148.1 # in nF\n", "X6=147.5 # in nF\n", "X7=147.6 # in nF\n", "X8=147.4 # in nF\n", "X9=147.6 # in nF\n", "X10=147.5 # in nF\n", "AM=(X1+X2+X3+X4+X5+X6+X7+X8+X9+X10)/n \n", "d1=X1-AM \n", "d2=X2-AM \n", "d3=X3-AM \n", "d4=X4-AM \n", "d5=X5-AM \n", "d6=X6-AM \n", "d7=X7-AM \n", "d8=X8-AM \n", "d9=X9-AM \n", "d10=X10-AM \n", "sigma=((d1**2+d2**2+d3**2+d4**2+d5**2+d6**2+d7**2+d8**2+d9**2+d10**2)/(n-1))**(1.0/2)\n", "Pe1=0.6745*sigma # probable error of one reading\n", "probable_error=Pe1/(n-1)**(1.0/2)\n", "print \"Probable error of one reading = \",round(Pe1,4),\" nF\"\n", "print \"Probable error of mean = \",round(probable_error,4),\" nF\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Probable error of one reading = 0.2062 nF\n", "Probable error of mean = 0.0687 nF\n" ] } ], "prompt_number": 86 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.4.i - page : 2-34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#ARITHEMATIC MEAN\n", "import numpy\n", "q=[10.3,10.7,10.9,9.7,9.5,9.2,10.3,11.7] #\n", "AM= numpy.mean(q) #arithematic mean in mm\n", "print \"Arithematic mean is \",AM,\" kg/cm2\"\n", "#answer is wrong in textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Arithematic mean is 10.2875 kg/cm2\n" ] } ], "prompt_number": 65 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.4.ii - page : 2-34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#average deviation\n", "import numpy\n", "n=8 # NO. OF MEASUREMENTS\n", "q=[10.3,10.7,10.9,9.7,9.5,9.2,10.3,11.7] #\n", "AM= numpy.mean(q) #arithematic mean in mm\n", "d=q-AM # deviation\n", "davg=sum(abs(d))/n # average deviation\n", "print \"Average deviation = \",round(davg,4),\" kg/cm2\"\n", "#answer is wrong in textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Average deviation = 0.6156 kg/cm2\n" ] } ], "prompt_number": 66 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.4.iii - page : 2-34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#standard deviation\n", "import numpy\n", "q=[10.3,10.7,10.9,9.7,9.5,9.2,10.3,11.7] #\n", "AM= numpy.mean(q) #arithematic mean in mm\n", "d=q-AM\n", "sigma=0\n", "n=8 # no. of measurements\n", "for dev in d:\n", " sigma+=dev**2\n", "sigma/=(n-1)\n", "sigma**=(1.0/2)\n", "print \"Standard Deviation is \",round(sigma,4),\" kg/cm2\"\n", "#answer is wrong in textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Standard Deviation is 0.8184 kg/cm2\n" ] } ], "prompt_number": 95 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7.4.iv - page : 2-34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#probable error\n", "n=8 # no. of measurements\n", "q=[10.3,10.7,10.9,9.7,9.5,9.2,10.3,11.7] #\n", "AM= numpy.mean(q) #arithematic mean in mm\n", "d=q-AM\n", "sigma=0\n", "n=10 # no. of measurements\n", "for dev in d:\n", " sigma+=dev**2\n", "sigma/=(n-1)\n", "sigma**=(1.0/2)\n", "pe1=0.6745*sigma # Probable error of one reading\n", "print \"Probable error of one reading is \",round(pe1,4),\" kg/cm2\"\n", "pm=pe1/(n-1)**(1.0/2)\n", "print \"Probable error of mean is \",round(pm,4),\" kg/cm2\"\n", "#answer is wrong in textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Probable error of one reading is 0.4868 kg/cm2\n", "Probable error of mean is 0.1623 kg/cm2\n" ] } ], "prompt_number": 67 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.8.1 - page : 2-34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#ARITHEMATIC MEAN ,median value ,standard deviation and variance\n", "q=[25.5,30.3,31.1,29.6,32.4,39.4,28.9,30.0,33.3,31.4,29.5,30.5,31.7,33.0,29.2] #\n", "AM= numpy.mean(q) #arithematic mean in mm\n", "n=len(q) # no. of measurements\n", "Q=q-AM\n", "mv=sorted(q)[n/2] # get the median value from sorted q\n", "d=q-AM\n", "sigma=0\n", "for dev in d:\n", " sigma+=dev**2\n", "sigma/=(n-1)\n", "sigma**=(1.0/2) #standard deviation\n", "V=sigma**2 #variance\n", "print \"Arithematic mean is \",round(AM,4),\" V\"\n", "print \"Median value is\",round(mv,1)\n", "\n", "print \"Standard Deviation is \",round(sigma,2)\n", "\n", "print \"Variance is \",round(V,0)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Arithematic mean is 31.0533 V\n", "Median value is 30.5\n", "Standard Deviation is 3.0\n", "Variance is 9.0\n" ] } ], "prompt_number": 116 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.8.2 - page : 2-37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#ARITHEMATIC MEAN\n", "#from __future__ import division\n", "v=[10,11,12,13,14] #\n", "f=[03,12,18,12,03] #\n", "xn=[a*b for a,b in zip(v,f)]\n", "am=sum(xn)/sum(f) # arithmetic mean\n", "print \"Arithematic mean is \",am,\" V\"\n", "dn=[x-am for x in v] # deviation\n", "n_dn=[a*b for a,b in zip(f,dn)]\n", "dn2=[a*b for a,b in zip(dn,dn)]\n", "n_dn2=[a*b for a,b in zip(f,dn2)]\n", "absn_dn=[abs(a) for a in n_dn]\n", "mean_dev=sum(absn_dn)/sum(f)\n", "print \"Mean deviation = \",mean_dev\n", "sigma=(sum(n_dn2)/sum(f))**(1.0/2)\n", "print \"Standard deviation is \", sigma\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Arithematic mean is 12.0 V\n", "Mean deviation = 0.75\n", "Standard deviation is 1.0\n" ] } ], "prompt_number": 46 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.8.3 - page : 2-37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#ARITHEMATIC MEAN ,median value ,standard deviation \n", "import numpy\n", "q=[29.2,29.5,29.6,30.0,30.5,31.4,31.7,32.4,33.0,33.3,39.4,28.9] #\n", "AM= numpy.mean(q)#arithematic mean in mm\n", "print \"Arithematic mean is \",round(AM,2)\n", "mv=sorted(q)[int(len(q)/2-1)]\n", "print \"Median value = \",mv\n", "d=[x-AM for x in q]\n", "d2=[x**2 for x in d]\n", "sigma=(sum(d2)/(len(q)-1))**(1.0/2)\n", "print \"Standard Deviation = \",round(sigma,3)\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Arithematic mean is 31.57\n", "Median value = 30.5\n", "Standard Deviation = 2.886\n" ] } ], "prompt_number": 97 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.8.4 - page:2-39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Unknown resistor \n", "#given data :\n", "S=1000.0 # ohm/V\n", "V=100.0 #in V\n", "I=5*10**-3 # in A\n", "# part (i)\n", "R_app=(V/I)*10**-3 \n", "print \"(i) Apparent Resistor, R_app = \",R_app, \" kohm\"\n", "# part (ii)\n", "V1=150 #in V\n", "Rv=S*V1*10**-3 \n", "Rx=Rv/6.5 #actual resistance in kohm\n", "print \"(ii) Actual resistance is \",round(Rx,2),\" kohm.\"\n", "# part(iii)\n", "per=(Rx-R_app)/Rx*100 # in %\n", "print \"(iii) Percentage error due to loading effect of voltmeter is \",round(per,1), \" %\" \n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Apparent Resistor, R_app = 20.0 kohm\n", "(ii) Actual resistance is 23.08 kohm.\n", "(iii) Percentage error due to loading effect of voltmeter is 13.3 %\n" ] } ], "prompt_number": 103 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.8.5 - page : 2-40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# limiting error\n", "#given data :\n", "del_A=2.5 # may be +ve or-ve in %\n", "As=400.0 \n", "FSD=600.0 # in V\n", "del_A1=(del_A/100)*FSD \n", "e=(del_A1/As)*100 # in %\n", "print \"Limiting error, e = \",e, \" %\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Limiting error, e = 3.75 %\n" ] } ], "prompt_number": 104 } ], "metadata": {} } ] }