{ "metadata": { "name": "", "signature": "sha256:d811f941685df0c27130d7c823a224d6aa75e253b0c49d58341e9220ca07cdb5" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter16-Structure of Solids" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg483" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 16.1\n", "##calculation of density\n", "\n", "##given values\n", "a=3.36*10**-10;##lattice constant in m\n", "M=209.;##atomicmass of polonium in kg\n", "N=6.02*10**26;##avogadro's number\n", "z=1.;##no of atom\n", "##calculation\n", "d=z*M/(N*a**3)\n", "\n", "print'%s %.2f %s'%('density (in kg/m^3) is',d,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "density (in kg/m^3) is 9152.34 \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg483" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 16.2\n", "##calculation of no of atoms\n", "\n", "##given values\n", "a=4.3*10**-10;##edge of unit cell in m\n", "d=963.;##density in kg/m**3\n", "M=23.;##atomicmass of sodium in kg\n", "N=6.02*10**26;##avogadro's number\n", "\n", "##calculation\n", "z=d*N*a**3./M;\n", "\n", "print'%s %.2f %s'%('no of atoms is',z,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "no of atoms is 2.00 \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg483" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 16.3\n", "##calculation of distance\n", "\n", "##given values\n", "z=4.;##no of atoms in fcc\n", "d=2180.;##density in kg/m**3\n", "M=23+35.3;##atomicmass of sodium chloride in kg\n", "N=6.02*10**26;##avogadro's number\n", "\n", "##calculation\n", "a1=z*M/(N*d);\n", "a=a1**(1/3.);\n", "l=a/2.;##in m\n", "\n", "print'%s %.2f %s'%('distance between adjacent chlorine and sodium atoms in armstrong is',l*10**10,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "distance between adjacent chlorine and sodium atoms in armstrong is 2.81 \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg495" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 16.4\n", "##calculation of interatomic spacing\n", "\n", "##given values\n", "alpha=30*math.pi/180.;##Bragg angle in degree\n", "h=1;\n", "k=1;\n", "l=1;\n", "m=1;##order of reflection\n", "x=1.75*10**-10;##wavelength in m\n", "\n", "##calculation\n", "d=m*x/(2.*math.sin(alpha));\n", "a=d*math.sqrt(h**2+k**2+l**2.);##in m\n", "\n", "print'%s %.2f %s'%('interatomic spacing in armstrong is',a*10**10,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "interatomic spacing in armstrong is 3.03 \n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }