{ "metadata": { "name": "", "signature": "sha256:0b8e52617510df277ef1e48e119f37ff192613df767b6d3b9de6242855aa9cf9" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 6: Multiple Access Techniques" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.1, Page 158" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Area=8; #in km^2\n", "Cover=4000.;# in km^2\n", "CallBH=1.2; #Avg calls during BH\n", "HT=100; # Avg holding time in sec\n", "Block=0.02; #Blocking=2%\n", "N=4.;#Frequency reuse factor\n", "Spectrum=12.5;# in MHz\n", "CHBW=200;# in kHz\n", "User_CH=8;#No of users per RF channel\n", "\n", "#Calculations&Results\n", "RFCH=Spectrum*1000/CHBW;\n", "TCH=int(RFCH)*User_CH;\n", "SigCH=3;#No of signalling channels per cell\n", "TCH_cell=TCH/N-SigCH;\n", "Cells=Cover/Area;\n", "OffLoad=108.4; # in Erlangs\n", "print 'Using Erlang-B Tables, Total traffic offered by %d channels at 0.02 blocking = %.1f Erlangs/cell'%(TCH_cell,OffLoad*(1-Block));\n", "CarLoad=OffLoad*(1-Block);\n", "Calls_hr_cell=CarLoad*3600/HT;\n", "MaxUser_hr_cell=Calls_hr_cell/CallBH;\n", "Seff=CarLoad*Cells/(Spectrum*Cover);\n", "print 'Spectral Efficiency is %.2f Erlangs/MHz/km^2'%Seff;" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Using Erlang-B Tables, Total traffic offered by 121 channels at 0.02 blocking = 106.2 Erlangs/cell\n", "Spectral Efficiency is 1.06 Erlangs/MHz/km^2\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.2, Page 159" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "TCH=395; # Traffic Channels\n", "SysBW=12.5; #in MHz\n", "CHspace=30.; # in kHz\n", "\n", "#Calculations\n", "Eff=TCH*CHspace/(SysBW*1000);\n", "\n", "#Result\n", "print 'Multiple access spectral efficiency of FDMA System is %.3f'%Eff" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Multiple access spectral efficiency of FDMA System is 0.948\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.3, Page 160" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Tf=40; #Frame duration in msec\n", "Mt=6; # Frames per slot\n", "Bu=30; #bandwidth(KHz) of an individual user during his or her time slot\n", "Nu=395.;# number of users sharing the same time slot in the system, but having access to different frequency sub-bands\n", "Bw=12.5; # in MHz\n", "DR=16.2;#Data rate in kbps\n", "FDur=40.; # Frame duration in msec\n", "slots=6; #No of slots per time frame\n", "IndiRate=16.2; #Individual data rate in kbps\n", "Srate=13.; #Speech rate in kbps\n", "\n", "#Calculations\n", "TimeSlot=(Srate/IndiRate)*(FDur/slots);\n", "Seff=TimeSlot*slots*Bu*Nu/(FDur*Bw*1000);\n", "\n", "#Results\n", "print 'Multiple access spectral efficiency of TDMA is %.2f'%Seff;\n", "print 'The overhead portion of the frame is %d percent'%((1-Seff)*100);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Multiple access spectral efficiency of TDMA is 0.76\n", "The overhead portion of the frame is 23 percent\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.4, Page 161" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "nb=0.9; #BW efficiency factor\n", "u=2; # Bit Efficiency with QPSK\n", "Vf=1; # Voice activity factor\n", "BW=12.5; #in MHz\n", "IR=16.2; # in kbps\n", "N=19; #frequency reuse factor\n", "\n", "#Calculations\n", "Nu=nb*u*BW*1000/(Vf*IR*N);# number of channels (mobile users) per cell\n", "Seff=int(Nu)*IR/(BW*1000);\n", "\n", "#Results\n", "print 'Capacity of system is %d mobile users per cell'%Nu;\n", "print 'Spectral efficiency of TDMA system is %.3f bit/sec/Hz'%Seff" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacity of system is 73 mobile users per cell\n", "Spectral efficiency of TDMA system is 0.095 bit/sec/Hz\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.5, Page 163" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Nr=2.;# number of reference bursts per frame\n", "Nt=24; # number of traf\ufb01c bursts (slots) per frame(120msec)\n", "FL=120; #Frame length in msec\n", "Br=148; # number of overhead bits per reference burst\n", "Bp=34; # number of overhead bits per preamble per slot \n", "Bg=8.25;#number of equivalent bits in each guard time interval \n", "Tf=120; # frame duration in msec\n", "Rrf=270.83333333; # bit rate of the RF channel in kbps\n", "R=22.8; #bit rate of each channel in kbps\n", "\n", "#Calculations\n", "B0=Nr*(8*Br)+Nt*(8*Bp)+(Nt+Nr)*(8*Bg);#The number of overhead bits per frame\n", "Bt=FL*10**-3*Rrf*10**3;#The total number of bits per frame \n", "Eff=(1-B0/Bt)*100;\n", "CH_Frame=(Eff/100)*Rrf/R;#No of channels/frame\n", "\n", "#Results\n", "print 'The frame efficiency is %.2f percent'%Eff;\n", "print 'Number of channels/frame are %d'%(CH_Frame)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The frame efficiency is 67.35 percent\n", "Number of channels/frame are 7\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.6, Page 170" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "nb=0.9;#bandwidth ef\ufb01ciency\n", "nf=0.45;#frequency reuse ef\ufb01ciency \n", "Cd=0.8; #capacity degradation factor \n", "Vf=0.4;#voice activity factor \n", "Eb_I0=7; # desired energy-to-interference ratio in dB\n", "L=1;# ef\ufb01ciency of sector-antenna in cell \n", "BW=12.5;#One way system BW in MHz\n", "R=16.2;#Information rate in kbps\n", "\n", "#Calculations\n", "Eb_I=10**(Eb_I0*0.1);#To convert from dB to a normal value\n", "Nu=(nf*nb*Cd*L/Vf)*(BW*1000/(Eb_I*R));#Capacity of system\n", "Seff=round(Nu)*R/(12.5*10**3);\n", "\n", "#Results\n", "print 'Capacity of system is %d mobile users per cell'%round(Nu);\n", "print 'Spectral efficiency of TDMA system is %.3f bits/sec/Hz'%Seff;\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacity of system is 125 mobile users per cell\n", "Spectral efficiency of TDMA system is 0.162 bits/sec/Hz\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.7, Page 171" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "#Given Data from Exa 6.4 and Exa 6.6\n", "Cd=0.8; #capacity degradation factor\n", "R=16.2;#Data rate in kbps\n", "Eb_I0=7; #in dB\n", "Eb_I=10**(Eb_I0*0.1);#To convert from dB to a normal value\n", "Vf=0.4;#voice activity factor \n", "u=2; # Bit Efficiency\n", "IR=16.2; # in kbps\n", "N=19; #frequency reuse factor\n", "nf=0.45;#frequency reuse ef\ufb01ciency \n", "\n", "#Calculations\n", "Ncdma_by_Ntdma=Cd*N*nf*IR/(Eb_I*Vf*u*R);\n", "\n", "#Result\n", "print 'The ratio of capacity of DS-CDMA to TDMA is %.3f'%Ncdma_by_Ntdma" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ratio of capacity of DS-CDMA to TDMA is 1.706\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.8, Page 172" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "Bss=600; #Hopping bandwidth in MHz\n", "stepsize=400; # in Hz\n", "\n", "#Calculations\n", "No_of_Tones=Bss*10**6/stepsize;\n", "Min_chips_required=math.log(No_of_Tones,2);\n", "\n", "#Result\n", "print 'Minimum number of chips required are %d chips'%Min_chips_required" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum number of chips required are 20 chips\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.9, Page 179" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "e=2.71828; #Euler's number\n", "Tprop=0.4; #Max propogation delay in sec\n", "R=10; #data rate in Mbps\n", "PackLen=400; #packet length in bits\n", "\n", "#Calculations\n", "Tp=PackLen/R; #packet transmission time in microsec\n", "a=Tprop/Tp;\n", "G=Tp*10**-6*R*10**6/PackLen;#normalized offered traf\ufb01c load \n", "#Slotted nonpersistent\n", "S0=a*G*e**(-a*G)/(1-e**(-a*G)+a);#normalized throughput \n", "#Unslotted nonpersistent\n", "S1=G*e**(-a*G)/(1+(2*a)+e**(-a*G));#normalized throughput \n", "#Slotted 1-persistent\n", "S2=G*e**(-G*(1+a))*(1+a-e**(-a*G))/((1+a)*(1-e**(-a*G))+a*e**(-G*(1+a)));#normalized throughput \n", "\n", "#Results\n", "print 'The Normalized throughput with an unslotted non persistent,a slotted persistent and a slotted 1-persistent CSMA protocol are \\n %.3f,%.3f and %.3f respectively'%(S0,S1,S2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Normalized throughput with an unslotted non persistent,a slotted persistent and a slotted 1-persistent CSMA protocol are \n", " 0.496,0.493 and 0.531 respectively\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.10, Page 188" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Tprop=4; #maximum propogation delay in sec\n", "R=10; # data rate in Mbps\n", "PackLen=400.; #data packet length in bits\n", "ACK=20; #length of ACK packet in bits\n", "Tproc=1; #processing time(sec)\n", "p=0.01;#probability that a data packet or its ACK can be corrupted during transmission\n", "\n", "#Calculations\n", "Tp=PackLen/R; #packet transmission time in microsec\n", "Ta=ACK/R; # transmission time for an ACK in microsec\n", "T=Tp+2*Tprop+2*Tproc+Ta;# total time for transmission time \n", "# Stop and wait ARQ\n", "Eff0=(1-p)*Tp/((1-p)*T+p*Tp);\n", "#SRP with window size W=8\n", "W=8;\n", "Eff1=(2+p*(W-1))/(2+p*(3*W-1));\n", "#Go-Back-N protocol with window size W=8\n", "Eff2=1./(1+W*(p/(1-p)));\n", "\n", "#Results\n", "print 'The data link protocol efficiency with Stop and Wait protocol, SRP and GBN are \\n %.3f, %.3f abd %.3f respectively'%(Eff0,Eff1,Eff2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The data link protocol efficiency with Stop and Wait protocol, SRP and GBN are \n", " 0.763, 0.928 abd 0.925 respectively\n" ] } ], "prompt_number": 15 } ], "metadata": {} } ] }