{ "metadata": { "name": "", "signature": "sha256:cb8c1d89336b90a52fb3fc2ac2cf4a335c076b1a2d2bc8b2521052d89b269ec7" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9 : Groundwater Flow" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.1 Page No : 9-11" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "t = 10\t#C\n", "s = 74.2\t#days\n", "c = 0.01\t#mm\n", "d = 245\t#mm\n", "\t\n", "#CALCULATIONS\n", "h = s/(d*c)\t#cm\n", "\t\n", "#RESULTS\n", "print 'the high will water at a temperature = %.1f cm'%(h)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the high will water at a temperature = 30.3 cm\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.2 Page No : 9-13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "p1 = 1000\t#ft\n", "p2 = 50\t#ft\n", "g = 20\t#ft/mile\n", "v = 5280.\t#ft\n", "q = 7.5*10**-6\t#ft\n", "t = 60\t#F\n", "k = 2835\t#ft/days\n", "p = 7.5\t#ft\n", "\t\n", "#CALCULATIONS\n", "S = g/v\t#ft\n", "W = k*(g/v)\t#ft/day\n", "Q = W*p1*p2*q\t#mgd\n", "P = k*p\t#ft\n", "P1 = P*p2\t#mgd\n", "\t\n", "#RESULTS\n", "print 'the velocity of flow = %.2f mgd'%(Q)\n", "print 'the standard coefficient pf permeability = %.2e mgd'%(P1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the velocity of flow = 4.03 mgd\n", "the standard coefficient pf permeability = 1.06e+06 mgd\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.3 Page No : 9-19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\n", "#initialisation of variables\n", "p = 40. \t#ft\n", "d = 56. \t#ft\n", "d1 = 140. \t#ft\n", "p1 = 30. \t#ft\n", "w = 3.28*10**-4\t#fps\n", "\t\n", "#CALCULATIONS\n", "Q = w*(p/d1)*2*d*p\t#cfs\n", "q = Q/p\t#cfs\n", "K = w*(p/d1)\t#fps\n", "x0 = q/(2*math.pi*K)\t#ft\n", "Z = 2*math.pi*x0\t#ft\n", "\t\n", "#RESULTS\n", "print 'the yield of the well if the coefficient of permeability = %.1f ft'%(x0)\n", "print 'the distance of the point of stagnation = %.0f ft'%(Z)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the yield of the well if the coefficient of permeability = 17.8 ft\n", "the distance of the point of stagnation = 112 ft\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.4 Page No : 9-23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "p = 5.*10**6\t #ft\n", "Q = 350. \t#gpm\n", "x = 225. \t#ft\n", "u = 10.**-2\t#ft\n", "g = 1.87\t#ft\n", "p2 = 7.*10**2\t#ft\n", "p3 = 10.9\t#ft\n", "w = 4.0\t#ft\n", "t = 114.6\t #ft\n", "d = 10. \t#ft\n", "p1 = 5. \t#ft\n", "w1 = 3.2*10**4\t#ft\n", "W = 21.75\t#ft\n", "\t\n", "#CALCULATIONS\n", "T = t*Q*4/p1\t#gpd/ft\n", "S = u*(w1)/(g*(p))\t#ft\n", "U = g*((S)/(T))*(x**2/d)\t#ft\n", "P = t*(p2)*p3/(T)\t#ft\n", "U1 = g*((S)/(T))*(1./d)\t#ft\n", "P1 = t*(p2)*W/(T)\t#ft\n", "\t\n", "#RESULTS\n", "print 'the type curve as if a transparency of the observed data had moved into place over the type = %.0f ft'%(P1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the type curve as if a transparency of the observed data had moved into place over the type = 54 ft\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.5 Page No : 9-24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\t\n", "#initialisation of variables\n", "Q = 350. \t#gpm\n", "x = 225. \t#ft\n", "t = 1. \t#min\n", "p = 1.6\t #ft\n", "t2 = 10. \t#min\n", "p2 = 4.5\t#ft\n", "p3 = 700. \t#gpm\n", "T = 3.2*10**4\t#gpd/ft\n", "t0 = 0.3 \t#min\n", "u = 1.15*10**-5\n", "\t\n", "#CALCULATIONS\n", "S = t0*(T)*t0/((x)**2*1440)\t#ft\n", "P = ((114.6*p3)/(T))*(-0.5772*2.3*math.log(u))\t#ft\n", "\n", "#RESULTS\n", "print 'A straight line being drawn through the ppints for the higher = %.0f ft'%(P)\n", "\n", "# note : book answer is wrong. please check." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "A straight line being drawn through the ppints for the higher = 38 ft\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.6 Page No : 9-31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "h = 4.8\t #ft\n", "m = 13.4\t #ft\n", "k = 10.**-1\t #cm/sec\n", "k1 = 3.28*10**-3\t#fps\n", "n = 7. \t#ft\n", "n1 = 11. \t#ft\n", "q = 1.0*10**-2\n", "\t\n", "#CALCULATIONS\n", "Q = k1*h*n/n1\t#cfs/ft\n", "Q1 = 2*q*10**2\t#cfs\n", "\t\n", "#RESULTS\n", "print 'A satisfactory orthogonal system the flow of into the collector = %.0f cfs'%(Q1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "A satisfactory orthogonal system the flow of into the collector = 2 cfs\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }