{ "metadata": { "name": "", "signature": "sha256:d903acbbd579075c20da58df0664f6b615313ecea1f356fbfe69d66ce9759ff7" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5 : Water and Wastewater Volumes" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.1 Page No : 5-6" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "t1 = 5.25\t#yr\n", "t2 = 10.00\t#yr\n", "yi = 171000\t#in\n", "ye = 111000\t#in\n", "yt = 5.23300\t#in\n", "yl = 5.04532\t#in\n", "yn = 31500\t#in\n", "ym = 0.09853\t#in\n", "tm = 9.25\t#yr\n", "tn = 10.00\t#yr\n", "\t\n", "#CALCULATIONS\n", "T = t1/t2\t#yr\n", "T1 = tm/tn\t#yr\n", "Y = yi-ye\t#in\n", "Yt = yt-yl\t#in\n", "\t\n", "#RESULTS\n", "print 'the fifth intercensal year = %.3f yr'%(T)\n", "print 'the ninth postcensal year = %.3f yr'%(T1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the fifth intercensal year = 0.525 yr\n", "the ninth postcensal year = 0.925 yr\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.2 Page No : 5-8" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sympy import Symbol\n", "import math\n", "\n", "#initialisation of variables\n", "y0 = 30000\t#in\n", "y1 = 172000\t#in\n", "y2 = 292000\t#in\n", "a = 172\t #ft\n", "p = 30.\t #ft\n", "y = 292\t #ft\n", "q = 322000\t#ft\n", "g = 313\t #ft\n", "n = 0.05\t#ft\n", "d = -2.442\t#ft\n", "t = Symbol('t')\n", "\n", "#CALCULATIONS\n", "L = (2*p*a*y2-(a)**2*q)/(p*y-(a)**2)\t#moreover\n", "m = (g-p)/p\t#ft\n", "N = n*d\t#in\n", "Y = g/(1+9.43*math.exp(N)*t)\t#in\n", "\t\n", "#RESULTS\n", "print 'the saturation populations = %.2f moreover'%(round(L,-3))\n", "print 'the coefficients = %.3f in'%(N)\n", "print 'the equation of a logistic curve = ',(Y)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the saturation populations = 313000.00 moreover\n", "the coefficients = -0.122 in\n", "the equation of a logistic curve = 313/(8.34611446180163*t + 1)\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.4 Page No : 5-19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\n", "#initialisation of variables\n", "p = 100000\t#in\n", "d = 150.\t#in\n", "h = 1000000.\t#in\n", "a1 = 2.0\t#draft\n", "a2 = 3.0\t#draft\n", "a3 = 1.6\t#draft\n", "m = 1.5\t #in\n", "q = 2.5\t #in\n", "v = 1020.\t#in\n", "w = 100. \t#in\n", "t = 0.01\t#in\n", "v1 = 13.2\t#mgd\n", "\t\n", "#CALCULATIONS\n", "A = d*p/h\t#mgd\n", "M = m*A\t#mgd\n", "M1 = q*A\t#mgd\n", "V = v*math.sqrt(w)*(1-t*math.sqrt(w))\t#gpm\n", "D = M+v1\t#mgd\n", "L = a1*A\t#mgd\n", "L1 = (4./3)*M\t#max\n", "H = a2*A\t#mgd\n", "H1 = (4./3)*M1\t#max\n", "F = a3*A\t#mgd\n", "F1 = (1.6)*15\t#max\n", "\t\n", "#RESULTS\n", "print 'the resulting capacities of the four system = %.f max'%(F1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the resulting capacities of the four system = 24 max\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.6 Page No : 5-22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "r = 48\t#in\n", "A = 450\t#gpd/acre\n", "B = 8000.\t#gpd/mile\n", "S = round(5280./350)\t#manholes/mile\n", "\n", "#CALCULATIONS\n", "C = (B-S*100)/12\t#gpd/mile\n", "\n", "#RESULTS\n", "print 'the ground a quarter of it eventually = %.2f gpd/mile'%(C)\n", "\n", "# note : answer in book is wrong. please check." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the ground a quarter of it eventually = 541.67 gpd/mile\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7 Page No : 5-23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "p1 = 20.\t#ft\n", "p2 = 30.\t#ft\n", "w = 5. \t#person\n", "s = 17800.\t#in\n", "h = 1200.\t#in\n", "q = 100. \t#in\n", "i = 1.\t#in\n", "\t\n", "#CALCULATIONS\n", "S = p1*p2*i*s/(h*w)\t#gpcd\n", "P = (q*w*10/S)\t#percent\n", "\n", "\n", "#RESULTS\n", "print 'the degree of separation of stormwater = %.0f percent'%(P)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the degree of separation of stormwater = 3 percent\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.8 Page No : 5-24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "s = 105\t#gpcd\n", "m = 315\t#gpcd\n", "m1 = 35\t#gpcd\n", "Q1 = 360\t#gpcd\n", "Q2 = 30\t#gpcd\n", "p1 = 20\t#pecent\n", "p2 = 15\t#persons/acer\n", "D = 21\t#persons/acre\n", "I = 2000\t#gpd/acre\n", "\t\n", "#CALCULATIONS\n", "A = D*(s+Q2)+I\t#gpd/acre\n", "R = D*(m+Q2)+I\t#gpd/acre\n", "L = D*(m1+Q2)+I\t#gpd/acre\n", "\t\n", "#RESULTS\n", "print 'the average peak and low rates of flow = %.0f gpd/acre'%(round(L,-1))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the average peak and low rates of flow = 3370 gpd/acre\n" ] } ], "prompt_number": 16 } ], "metadata": {} } ] }