{ "metadata": { "name": "", "signature": "sha256:14bd2b02adda106b7feb66c435425687c9047c3f660e50bfc5fca311a000dc14" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 12 : Water Transmission" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.1 Page No : 12-9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "c = 100\t#in\n", "a = 10\t#in\n", "Q = 0.976\t#ft\n", "\t\n", "#CALCULATIONS\n", "G = a*Q\t#ft\n", "\t\n", "#RESULTS\n", "print 'the graphical basic = %.2f ft'%(G)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the graphical basic = 9.76 ft\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.2 Page No : 12-9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\n", "#initialisation of variables\n", "a = 27.6\t#sq ft\n", "h = 1.37\t#ft\n", "d = 1.53*(27.9)**0.38*(1.36)**0.24\t#ft\n", "\t\n", "#CALCULATIONS\n", "R = d/4\t#ft\n", "A = (math.pi*d**2)/4\t#sq ft\n", "\t\n", "#RESULTS\n", "print 'The diameter hydraulics radius and area of the hydraulically equivalent circular conduit = %.1f sq ft'%(A)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The diameter hydraulics radius and area of the hydraulically equivalent circular conduit = 26.7 sq ft\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.3 Page No : 12-12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "h1 = 13.5\t#ft\n", "h2 = 19.0\t#ft\n", "h3 = 27.5\t#ft\n", "c1 = 2.0*10**4\t#ft\n", "c2 = 2.1*10**4\t#ft\n", "c3 = 2.2*10**4\t#ft\n", "\t\n", "#CALCULATIONS\n", "H = h1+h2+h3\t#ft\n", "C = c1+c2+c3\t#ft\n", "\t\n", "#RESULTS\n", "print 'the most economical distributions of the available head = %.1e ft'%(C)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the most economical distributions of the available head = 6.3e+04 ft\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.4 Page No : 12-28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "p = 60\t#in\n", "h = 20\t#percent\n", "a = 1000\t#ft\n", "h1 = 40\t#percent\n", "c = 0.5\t#ft\n", "p1 = 14.3\t#ft\n", "p2 = 6.1\t#ft\n", "d = 11.7*10**-2\t#ft\n", "\t\n", "#CALCULATIONS\n", "deltaV = 26.7 - 18.3 # fps\n", "eq = 3.9*10**-2 * math.sqrt(deltaV/c)*(0.426)**0.356\n", "D = p*eq\t #ft\n", "\t\n", "#RESULTS\n", "print 'the air valve with a discharge the change in slop = %.2f in.'%(D)\n", "\n", "# note : slightly different because of rounding off error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the air valve with a discharge the change in slop = 7.08 in.\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.5 Page No : 12-29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\n", "#initialisation of variables\n", "p = 90.\t #deg\n", "h = 48.\t #in\n", "p1 = 100.\t#psig\n", "P = (1/2*math.pi)*h**2*p1*0.7071\t#lb\n", "r = 3000./54-31\t#ft\n", "l = 170.\t#in\n", "b = 6.5*10**-6\t#ft\n", "w = 46. \t#ft\n", "w1 = 1000.\t #ft\n", "\t\n", "#CALCULATIONS\n", "s = b*w*30*10**6\n", "D = (1./4*math.pi)*h**2*p1\t#lb\n", "P = (r)*h**2\t#lb\n", "T = math.pi*h*(1/4)*s\t#lb\n", "T1 = (1./2)*l\t#tons\n", "Del = b*w*w1\t#ft per\n", "\t\n", "#RESULTS\n", "print 'The expansion and contraction of the steel line can be as great as = %.1f ft per 1000ft of length, if unrestrained'%(Del)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The expansion and contraction of the steel line can be as great as = 0.3 ft per 1000ft of length, if unrestrained\n" ] } ], "prompt_number": 2 } ], "metadata": {} } ] }