{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 5: Uncertainity Principle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 1, Page number 177" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "uncertainity in momentum is 1.65e-24 kg m/sec\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "h=6.6*10**-34; #plancks constant(J s)\n", "deltax=4*10**-10; #uncertainity(m)\n", "\n", "#Calculations\n", "delta_px=h/deltax; #uncertainity in momentum(kg m/sec)\n", "\n", "#Result\n", "print \"uncertainity in momentum is\",delta_px,\"kg m/sec\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 2, Page number 177" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "uncertainity in position is 0.02418 m\n", "answer given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "h=6.6*10**-34; #plancks constant(J s)\n", "m=9.1*10**-31; #mass(kg)\n", "v=600; #speed(m/s)\n", "deltapx=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n", "\n", "#Calculations\n", "deltax=h/deltapx; #uncertainity in position(m)\n", "\n", "#Result\n", "print \"uncertainity in position is\",round(deltax,5),\"m\"\n", "print \"answer given in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 3, Page number 177" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "uncertainity in momentum is 6.63e-23 kg m/sec\n", "uncertainity in velocity is 7.286 *10**7 m/sec\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "h=6.63*10**-34; #plancks constant(J s)\n", "deltax=0.1*10**-10; #uncertainity(m)\n", "m0=9.1*10**-31; #mass(kg)\n", "\n", "#Calculations\n", "deltap=h/deltax; #uncertainity in momentum(kg m/sec)\n", "deltav=deltap/m0; #uncertainity in velocity(m/sec) \n", "\n", "#Result\n", "print \"uncertainity in momentum is\",deltap,\"kg m/sec\"\n", "print \"uncertainity in velocity is\",round(deltav/10**7,3),\"*10**7 m/sec\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 4, Page number 178" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "uncertainity in velocity is 1835\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "me=9.1*10**-31; #mass of electron(kg)\n", "mp=1.67*10**-27; #mass of proton(kg)\n", "\n", "#Calculations\n", "deltavebydeltavp=mp/me; #uncertainity in velocity\n", "\n", "#Result\n", "print \"uncertainity in velocity is\",int(deltavebydeltavp)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 5, Page number 178" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "smallest possible uncertainity in position is 0.0388 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "h=6.62*10**-34; #plancks constant(J s)\n", "v=3*10**7; #velocity(m/sec)\n", "c=3*10**8; #velocity of light(m/sec)\n", "m0=9*10**-31; #mass(kg)\n", "\n", "#Calculations\n", "deltaxmin=h*math.sqrt(1-(v**2/c**2))/(2*math.pi*m0*v); #smallest possible uncertainity in position(m)\n", "\n", "#Result\n", "print \"smallest possible uncertainity in position is\",round(deltaxmin*10**10,4),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 6, Page number 179" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "minimum uncertainity in velocity is 7.3 *10**5 m/s\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "h=6.6*10**-34; #plancks constant(J s)\n", "deltapmax=10**-9; #uncertainity in momentum(kg m/sec)\n", "m=9*10**-31; #mass(kg)\n", "\n", "#Calculations\n", "deltapmin=h/deltapmax; #smallest possible uncertainity in momentum(kg m/sec)\n", "deltavxmin=deltapmin/m; #minimum uncertainity in velocity(m/s) \n", "\n", "#Result\n", "print \"minimum uncertainity in velocity is\",round(deltavxmin/10**5,1),\"*10**5 m/s\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 7, Page number 179" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time required is 1.9 *10**-8 second\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "c=3*10**8; #velocity of light(m/sec)\n", "lamda=6000*10**-10; #wavelength(m)\n", "dlamda=10**-4*10**-10; #width(m)\n", "\n", "#Calculations\n", "deltat=lamda**2/(2*math.pi*c*dlamda); #time required(second)\n", "\n", "#Result\n", "print \"time required is\",round(deltat*10**8,1),\"*10**-8 second\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 8, Page number 180" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "uncertainity in position is 3.381 *10**-6 m\n", "answer given in the book varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "h=6.63*10**-34; #plancks constant(J s)\n", "m=9.1*10**-31; #mass(kg)\n", "v=3.5*10**5; #speed(m/s)\n", "deltap=(0.0098/100)*m*v; #uncertainity in momentum(kg m/sec)\n", "\n", "#Calculations\n", "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n", "\n", "#Result\n", "print \"uncertainity in position is\",round(deltax*10**6,3),\"*10**-6 m\"\n", "print \"answer given in the book varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 9, Page number 180" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "uncertainity in momentum is 5.276 *10**-20 kg m/sec\n", "kinetic energy of electron is 9559.1 MeV\n", "answer for kinetic energy given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "h=6.63*10**-34; #plancks constant(J s)\n", "m0=9.1*10**-31; #mass(kg)\n", "deltax=2*10**-15; #uncertainity in position(m)\n", "e=1.6*10**-19; #charge(coulomb)\n", "\n", "#Calculations\n", "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n", "K=deltap**2/(2*m0*e); #kinetic energy of electron(eV)\n", "\n", "#Result\n", "print \"uncertainity in momentum is\",round(deltap*10**20,3),\"*10**-20 kg m/sec\"\n", "print \"kinetic energy of electron is\",round(K/10**6,1),\"MeV\"\n", "print \"answer for kinetic energy given in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 10, Page number 180" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "minimum uncertainity in momentum is 1.05e-20 kg m/sec\n", "minimum kinetic energy is 2.06 *10**5 eV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "chi=1.05*10**-34; #plancks constant(J s)\n", "deltaxmax=2*5*10**-15; #uncertainity in momentum(kg m/sec)\n", "m=1.67*10**-27; #mass(kg)\n", "e=1.6*10**-19; #charge(coulomb)\n", "\n", "#Calculations\n", "deltapmin=chi/deltaxmax; #minimum uncertainity in momentum(kg m/sec)\n", "Emin=deltapmin**2/(2*m*e); #minimum kinetic energy(eV)\n", "\n", "#Result\n", "print \"minimum uncertainity in momentum is\",deltapmin,\"kg m/sec\"\n", "print \"minimum kinetic energy is\",round(Emin/10**5,2),\"*10**5 eV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 11, Page number 181" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "angular orbital position is 10 radian\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "e=5/100; #error\n", "h=1; #assume\n", "\n", "#Calculations\n", "deltaJ=e*2*h; #uncertainity in angular momentum\n", "delta_theta=h/deltaJ; #angular orbital position(radian)\n", "\n", "#Result\n", "print \"angular orbital position is\",int(delta_theta),\"radian\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }