{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 4: Matter Waves" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 1, Page number 153" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "de-Broglie wavelength in 1st case is 6.625e-34 m\n", "de-Broglie wavelength in 2nd case is 1.8 angstrom\n", "de-Broglie wavelength in 3rd case is 3.9 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "e=1.602*10**-19; #charge(coulomb)\n", "me=9.11*10**-31; #mass(kg)\n", "h=6.625*10**-34; #planks constant(Js)\n", "M=0.05; #mass(kg)\n", "v=20; #velocity(m/sec)\n", "vp=2200; #velocity of proton(m/sec)\n", "mp=1.67*10**-27; #mass of proton(kg)\n", "E=10; #energy(eV)\n", "\n", "#Calculations\n", "lamda1=h/(M*v); #de-Broglie wavelength in 1st case(m)\n", "lamda2=h/(mp*vp); #de-Broglie wavelength in 2nd case(m)\n", "lamda3=h/math.sqrt(2*me*e*E); #de-Broglie wavelength in 3rd case(m)\n", "\n", "#Result\n", "print \"de-Broglie wavelength in 1st case is\",lamda1,\"m\"\n", "print \"de-Broglie wavelength in 2nd case is\",round(lamda2*10**10,1),\"angstrom\"\n", "print \"de-Broglie wavelength in 3rd case is\",round(lamda3*10**10,1),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 2, Page number 154" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "de-Broglie wavelength in 1st case is 1.225 angstrom\n", "de-Broglie wavelength in 2nd case is 0.1225 angstrom\n", "de-Broglie wavelength in 3rd case is 0.15313 angstrom\n", "answer given in the book is wrong\n", "de-Broglie wavelength in 4th case is 0.1225 angstrom\n", "de-Broglie wavelength in 5th case is 0.3963 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "h=6.63*10**-34; #planks constant(Js)\n", "vp=10**4; #velocity of proton(m/sec)\n", "mp=1.673*10**-27; #mass of proton(kg)\n", "V1=100; #potential difference in 1st case(V)\n", "V2=10000; #potential difference in 2nd case(V)\n", "V3=6400; #potential difference in 3rd case(V)\n", "\n", "#Calculations\n", "lamda1=12.25/math.sqrt(V1); #de-Broglie wavelength in 1st case(angstrom)\n", "lamda2=12.25/math.sqrt(V2); #de-Broglie wavelength in 2nd case(angstrom)\n", "lamda3=12.25/math.sqrt(V3); #de-Broglie wavelength in 3rd case(angstrom)\n", "lamda4=12.25/math.sqrt(V2); #de-Broglie wavelength in 4th case(angstrom)\n", "lamda5=h*10**10/(mp*vp); #de-Broglie wavelength in 5th case(angstrom)\n", "\n", "#Result\n", "print \"de-Broglie wavelength in 1st case is\",lamda1,\"angstrom\"\n", "print \"de-Broglie wavelength in 2nd case is\",lamda2,\"angstrom\"\n", "print \"de-Broglie wavelength in 3rd case is\",round(lamda3,5),\"angstrom\"\n", "print \"answer given in the book is wrong\"\n", "print \"de-Broglie wavelength in 4th case is\",lamda4,\"angstrom\"\n", "print \"de-Broglie wavelength in 5th case is\",round(lamda5,4),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 3, Page number 154" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "de-Broglie wavelength of proton is 2.64 *10**-14 m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "c=3*10**8; #velocity of light(m/sec)\n", "mp=1.67*10**-27; #mass of proton(kg)\n", "h=6.62*10**-34; #planks constant(Js)\n", "\n", "#Calculations\n", "v=c/20; #velocity of proton(m/sec)\n", "lamda=h/(mp*v); #de-Broglie wavelength of proton(m)\n", "\n", "#Result\n", "print \"de-Broglie wavelength of proton is\",round(lamda*10**14,2),\"*10**-14 m\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 4, Page number 155" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "energy of neutron is 8.13 *10**-2 eV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "m=1.674*10**-27; #mass of proton(kg)\n", "h=6.6*10**-34; #planks constant(Js)\n", "lamda=10**-10; #wavelength(m)\n", "e=1.6*10**-19; #charge(coulomb)\n", "\n", "#Calculations\n", "E=h**2/(2*e*m*lamda**2); #energy of neutron(eV)\n", "\n", "#Result\n", "print \"energy of neutron is\",round(E*10**2,2),\"*10**-2 eV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 5, Page number 155" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "energy of neutron is 167217.6 eV\n", "answer given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "m=9.1*10**-31; #mass of proton(kg)\n", "h=6.62*10**-34; #planks constant(Js)\n", "lamda=3*10**-12; #wavelength(m)\n", "e=1.6*10**-19; #charge(coulomb)\n", "\n", "#Calculations\n", "E=h**2/(2*e*m*lamda**2); #energy of neutron(eV)\n", "\n", "#Result\n", "print \"energy of neutron is\",round(E,1),\"eV\"\n", "print \"answer given in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 6, Page number 155" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "voltage is 934.9 V\n", "answer given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "m=9.1*10**-31; #mass of proton(kg)\n", "h=6.6*10**-34; #planks constant(Js)\n", "lamda=0.4*10**-10; #wavelength(m)\n", "e=1.6*10**-19; #charge(coulomb)\n", "\n", "#Calculations\n", "V=h**2/(2*m*e*lamda**2); #voltage(V)\n", "\n", "#Result\n", "print \"voltage is\",round(V,1),\"V\"\n", "print \"answer given in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 7, Page number 156" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "velocity is 3.97 *10**3 m/sec\n", "kinetic energy of particle is 0.08225 eV\n", "answer in the book varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "m=1.67*10**-27; #mass of proton(kg)\n", "h=6.63*10**-34; #planks constant(Js)\n", "lamda=10**-10; #wavelength(m)\n", "e=1.6*10**-19; #charge(coulomb)\n", "\n", "#Calculations\n", "v=h/(m*lamda); #velocity(m/sec)\n", "E=m*v**2/(2*e); #kinetic energy of particle(eV)\n", "\n", "#Result\n", "print \"velocity is\",round(v/10**3,2),\"*10**3 m/sec\"\n", "print \"kinetic energy of particle is\",round(E,5),\"eV\"\n", "print \"answer in the book varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 8, Page number 156" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "wavelength of photon is 12.4 angstrom\n", "wavelength of electron is 0.39 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "c=3*10**8; #velocity of light(m/sec)\n", "E=1000; #energy(eV) \n", "m=9.1*10**-31; #mass of proton(kg)\n", "h=6.6*10**-34; #planks constant(Js)\n", "e=1.6*10**-19; #charge(coulomb)\n", "\n", "#Calculations\n", "lamdap=h*c/(E*e); #wavelength of photon(m)\n", "lamdae=h/math.sqrt(2*m*e*E); #wavelength of electron(m)\n", "\n", "#Result\n", "print \"wavelength of photon is\",round(lamdap*10**10,1),\"angstrom\"\n", "print \"wavelength of electron is\",round(lamdae*10**10,2),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 9, Page number 157" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "energy is 2.4 *10**-15 J\n", "wavelength of photo-electron is 0.1 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "c=3*10**8; #velocity of light(m/sec)\n", "m=9.1*10**-31; #mass of proton(kg)\n", "h=6.6*10**-34; #planks constant(Js)\n", "lamda=0.82*10**-10; #wavelength(m)\n", "\n", "#Calculations\n", "E=h*c/lamda; #energy(J)\n", "lamda=h/math.sqrt(2*m*E); #wavelength of photo-electron(m)\n", "\n", "#Result\n", "print \"energy is\",round(E*10**15,1),\"*10**-15 J\"\n", "print \"wavelength of photo-electron is\",round(lamda*10**10,1),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 10, Page number 157" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "wavelength of quantum is 0.0242 angstrom\n", "answer in the book varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "c=3*10**8; #velocity of light(m/sec)\n", "m=9.1*10**-31; #mass of proton(kg)\n", "h=6.6*10**-34; #planks constant(Js)\n", "\n", "#Calculations\n", "lamda=h/(m*c); #wavelength of quantum(m)\n", "\n", "#Result\n", "print \"wavelength of quantum is\",round(lamda*10**10,4),\"angstrom\"\n", "print \"answer in the book varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 11, Page number 158" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "de-broglie wavelength is 2.86 *10**-18 m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "E=10**14; #kinetic energy(eV)\n", "e=1.6*10**-19; #charge(coulomb)\n", "m=1.675*10**-27; #mass of proton(kg)\n", "h=6.625*10**-34; #planks constant(Js)\n", "\n", "#Calculations\n", "v=math.sqrt(2*e*E/m); #velocity(m/sec) \n", "lamda=h/(m*v); #de-broglie wavelength(m)\n", "\n", "#Result\n", "print \"de-broglie wavelength is\",round(lamda*10**18,2),\"*10**-18 m\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 12, Page number 158" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "de-broglie wavelength is 7.998 *10**-15 m\n", "answer given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "E=12.8*10**6; #kinetic energy(eV)\n", "e=1.6*10**-19; #charge(coulomb)\n", "m=1.675*10**-27; #mass of proton(kg)\n", "h=6.625*10**-34; #planks constant(Js)\n", "\n", "#Calculations\n", "v=math.sqrt(2*e*E/m); #velocity(m/sec) \n", "lamda=h/(m*v); #de-broglie wavelength(m)\n", "\n", "#Result\n", "print \"de-broglie wavelength is\",round(lamda*10**15,3),\"*10**-15 m\"\n", "print \"answer given in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 13, Page number 158" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "de-broglie wavelength is 0.0004 angstrom\n", "answer given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "E=12.8*10**6; #kinetic energy(eV)\n", "c=3*10**8; #velocity of light(m/sec)\n", "m=9.1*10**-31; #mass of electron(kg)\n", "mp=1836*m; #mass of proton(kg) \n", "h=6.625*10**-34; #planks constant(Js)\n", "e=1.6*10**-19; #charge(coulomb)\n", "\n", "#Calculations\n", "E=m*c**2; #energy(J)\n", "v=math.sqrt(2*E/mp); #velocity(m/sec) \n", "lamda=h/(mp*v); #de-broglie wavelength(m)\n", "\n", "#Result\n", "print \"de-broglie wavelength is\",round(lamda*10**10,4),\"angstrom\"\n", "print \"answer given in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 14, Page number 159" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "wavelength is 1.777 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "T=300; #temperature(K)\n", "m=1.67*10**-27; #mass of electron(kg)\n", "h=6.60*10**-34; #planks constant(Js)\n", "k=8.6*10**-5; #boltzmann constant(eV deg-1)\n", "e=1.6*10**-19; #charge(coulomb)\n", "\n", "#Calculations\n", "lamda=h/math.sqrt(2*m*e*k*T); #wavelength(m)\n", "\n", "#Result\n", "print \"wavelength is\",round(lamda*10**10,3),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 16, Page number 160" ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "de-broglie wavelength is 4.047 *10**11 angstrom\n", "answer given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "E=0.512*10**6; #kinetic energy(eV)\n", "e=1.6*10**-19; #charge(coulomb)\n", "m=1.673*10**-27; #mass of proton(kg)\n", "h=6.63*10**-34; #planks constant(Js)\n", "\n", "#Calculations\n", "v=2*e*E/m; #velocity(m/sec) \n", "lamda=h*10**10/(m*v); #de-broglie wavelength(angstrom)\n", "\n", "#Result\n", "print \"de-broglie wavelength is\",round(lamda*10**11,3),\"*10**11 angstrom\"\n", "print \"answer given in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 17, Page number 160" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "de-broglie wavelength is 0.006348 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "E=0.512*10**6; #rest mass energy(eV)\n", "e=1.6*10**-19; #charge(coulomb)\n", "KE=1.512*10**6; #kinetic energy(eV) \n", "c=3*10**8; #velocity of light(m/sec)\n", "m0=9.1*10**-31; #mass of proton(kg)\n", "h=6.63*10**-34; #planks constant(Js)\n", "\n", "#Calculations\n", "E1=(E+KE)*e; #energy(J)\n", "m=E1/c**2; #mass(kg)\n", "v=math.sqrt(c**2*(1-(m0/m)**2)); #velocity(m/sec)\n", "lamda=h*10**10/(m*v); #de-broglie wavelength(angstrom)\n", "\n", "#Result\n", "print \"de-broglie wavelength is\",round(lamda,6),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 18, Page number 161" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "de-broglie wavelength is 1.45 *10**-10 metre\n", "answer in the book varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "k=1.38*10**-23; #boltzmann constant\n", "T=300; #temperature(K)\n", "m0=1.67*10**-27; #mass of proton(kg)\n", "h=6.6*10**-34; #planks constant(Js)\n", "\n", "#Calculations\n", "lamda=h/math.sqrt(3*m0*k*T); #de-broglie wavelength(metre)\n", "\n", "#Result\n", "print \"de-broglie wavelength is\",round(lamda*10**10,2),\"*10**-10 metre\"\n", "print \"answer in the book varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 19, Page number 162" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "interplanar spacing is 1.78 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "k=1.38*10**-23; #boltzmann constant\n", "T=300; #temperature(K)\n", "mn=1.67*10**-27; #mass of proton(kg)\n", "h=6.62*10**-34; #planks constant(Js)\n", "\n", "#Calculations\n", "E=k*T; #energy(J)\n", "p=math.sqrt(2*mn*E); \n", "d=h*10**10/p; #interplanar spacing(angstrom)\n", "\n", "#Result\n", "print \"interplanar spacing is\",round(d,2),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 20, Page number 162" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "interplanar spacing is 0.4 angstrom\n", "answer given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "m=9*10**-31; #mass of proton(kg)\n", "e=1.6*10**-19; #charge(coulomb)\n", "V=344; #voltage(V)\n", "h=6.62*10**-34; #planks constant(Js)\n", "theta=60*math.pi/180; #angle(radian)\n", "\n", "#Calculations\n", "d=h*10**10/(2*math.sin(theta)*math.sqrt(2*m*e*V)); #spacing of crystal(angstrom)\n", "\n", "#Result\n", "print \"interplanar spacing is\",round(d,1),\"angstrom\"\n", "print \"answer given in the book is wrong\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }