{ "metadata": { "name": "", "signature": "sha256:855f448243394a83380cc86f4309c883de0251b8f54f502d859f2d887a1b20dc" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13 : Unsteady-state transport" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 13.1 - Page No :651\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "\n", "# Variables\n", "# given\n", "h = 12.; \t\t\t #[W/m**2*K] - heat transfer coefficeint\n", "k = 400.; \t\t\t #[W/m*K] - thermal conductivity\n", "\n", "# Calculation and Results\n", "# (a) for sphere\n", "r = 5.*10**-2; \t\t\t #[m] - radius of copper sphere\n", "Lc = ((4*math.pi*((r)**3))/3)/(4*math.pi*((r)**2));\n", "Nbi = h*Lc*(1./k);\n", "print \" a) The biot no. is Nbi = %.0e\"%(Nbi);\n", "\n", "# (b) for cyclinder\n", "r = 0.05; \t\t\t #[m] - radius of cyclinder\n", "L = 0.3; \t\t\t #[m] - height of cyclinder\n", "Lc = (math.pi*((r)**2)*L)/(2*math.pi*r*L);\n", "Nbi = h*Lc*(1./k);\n", "print \" b) The biot no. is Nbi = %.1e\"%(Nbi);\n", "\n", "# (c) for a long square rod\n", "L = .4; \t\t\t #[m] - length of copper rod\n", "r = 0.05; \t\t\t #[m] - radius of a cyclinder havimg same cross sectional area as that of square\n", "x = ((math.pi*r**2)**(1./2));\n", "Lc = ((x**2)*L)/(4*x*L);\n", "Nbi = h*Lc*(1./k);\n", "print \" c) The biot no. is Nbi = %.3e\"%(Nbi);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " a) The biot no. is Nbi = 5e-04\n", " b) The biot no. is Nbi = 7.5e-04\n", " c) The biot no. is Nbi = 6.647e-04\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 13.6 - Page No :684\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Variables\n", "# given\n", "d = 1*0.0254; \t\t #[m] banana diameter\n", "Lr = d/2; \t\t\t #[m]; \n", "Lz = (1.2/2)*(0.0254); \n", "x = Lz;\n", "r = Lr;\n", "k = 0.481; # thermal conductivity\n", "h = 20.; # heat coefficient\n", "mr = k/(h*Lr);\n", "mz = k/(h*Lz);\n", "nr = r/Lr;\n", "nz = x/Lz;\n", "t = 1.2; \t\t\t #[sec]\n", "\n", "# Calculations\n", "alpha = 1.454*10**-4;\n", "Xr = (alpha*t)/(Lr**2);\n", "Xz = (alpha*t)/(Lz**2);\n", "\n", "# using the above value of m,n,X the value for Ycz and Ycr from fig 13.14 is\n", "Ycr = 0.42;\n", "Ycz = 0.75;\n", "Yc = Ycr*Ycz;\n", "T_infinity = 400.; \t\t\t #[K]\n", "To = 295.;\n", "Tc = T_infinity-(Yc*(T_infinity-To));\n", "\n", "# Results\n", "print \" The temperature t the centre is Tc = %.0f K\"%(Tc);\n", "\n", "\n", "# Answer is vary because of rounding error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The temperature t the centre is Tc = 367 K\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 13.7 - Page No :688\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from numpy import *\n", "# Variables\n", "# given\n", "T_x0 = 300.; \t\t\t #[K]\n", "Tw = 400.; \t\t\t #[K]\n", "L = 0.013; \t\t\t #[m]\n", "alpha = 2.476*(10**-5); \t\t\t #[m**/sec]\n", "h = 600.; \t\t\t #[W/m**2*K]\n", "pcp = 3.393*(10**6); \t\t\t #[J/m**3*K]\n", "L = 0.013; \t\t\t #[m]\n", "del_tax = L/10.;\n", "betaa = 0.5;\n", "del_tat = 0.03;\n", "\n", "# Calculations\n", "del_tat = betaa*((del_tax)**2)*(1./alpha);\n", "T_infinity = 400.; \t\t\t #[K]\n", "\n", "# to be sure that the solution is stable, it is customary to truncate this number\n", "del_tat = 0.03; \t\t\t #[sec]\n", "# betaa = alpha*del_tat*((1./del_tax)**2);\n", "Told = zeros(11)\n", "for i in range(11):\n", " Told[i] = 300.;\n", "\n", "a = ((2*h*del_tat)/(pcp*del_tax));\n", "b = ((2*alpha*del_tat)/(pcp*((del_tax)**2)));\n", "\n", "Tnew = zeros(11)\n", "for j in range(11):\n", " Tnew[0] = (T_infinity*0.08162)+(Told[0]*(1-0.08162-0.8791))+(Told[1]*0.8791)\n", " for k in range(9):\n", " Tnew[k+1] = (betaa*Told[k+2])+((1.-2*betaa)*(Told[k+1]))+(betaa*Told[k]);\n", " Tnew[10] = ((2*betaa)*(Told[9]))\n", " Told = Tnew;\n", "# Results\n", "print \"Told values : \" ,(Told);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Told values : [ 325.54820838 319.78194857 315.05971328 311.28295197 308.32959437\n", " 306.07276601 304.39590474 303.20406441 302.43143939 302.04512688\n", " 302.04512688]\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 13.9 - Page No :700\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "p = 2050.; \t\t\t #[kg/m**3] - density of soil\n", "cp = 1840.; \t\t\t #[J/kg*K] - heat cpapacity of soil\n", "k = 0.52; \t\t\t #[W/m*K] - thermal conductivity of soil\n", "alpha = 0.138*10**-6; \t\t\t #[m**2/sec]\n", "t = 4*30*24*3600; \t\t\t #[sec] - no. of seconds in 4 months\n", "Tx = -5.; \t\t\t #[degC]\n", "Tinf = -20.; \t\t\t #[degC]\n", "T0 = 20.; \t\t\t #[degC]\n", "\n", "# from the fig 13.24 the dimensionless dismath.tance Z is \n", "Z = 0.46;\n", "\n", "# Calculations\n", "# then the depth is\n", "x = 2*((alpha*t)**(1./2))*Z\n", "\n", "# Results\n", "print \" the depth is x = %.1f m = %.1f ft\"%(x,x*3.6/1.10);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " the depth is x = 1.1 m = 3.6 ft\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 13.10 - Page No :701\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "d = 0.01; \t\t\t #[m] - diameter of cyclindrical porous plug\n", "D = 2.*10**-9; \t\t\t #[m**2/sec] - diffusion coefficient\n", "t = 60.*60; \t\t\t #[sec]\n", "r = d/2.;\n", "m = 0.;\n", "Ca_inf = 0.;\n", "Ca_0 = 10.;\n", "X = (D*t)/((r)**2);\n", "# from fig 13.14 the ordinate is\n", "Y = 0.7;\n", "\n", "# Calculations\n", "Ca_c = Ca_inf-Y*(Ca_inf-Ca_0);\n", "\n", "# Results\n", "print \" the concentration of KCL at the centre after 60 min is Ca = %.2f kg/m**3\"%(Ca_c);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " the concentration of KCL at the centre after 60 min is Ca = 7.00 kg/m**3\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }