{ "metadata": { "name": "", "signature": "sha256:390a761bad4c193a32a4fcd413c61db0b9a1c29b46bfad9c3be94c1204cb558b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13 - Nonreactive and reactive gaseous mixtures" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1 - Pg 271" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the mass and partial volumes of of oxygen, nitrogen\n", "#Initialization of variables\n", "P=70. #psia\n", "Pt=110. #psia\n", "V=20. #cu ft\n", "R0=1545. #Universal gas constant\n", "T=540. #R\n", "M=32. #Molecular weight of Oxygen\n", "M2=28. #Molecular weight of Nitrgoen\n", "#calculations\n", "N=P*V*144/(R0*T)\n", "mo=M*N\n", "Pn=Pt-P\n", "N2=Pn*V*144/(R0*T)\n", "mn=N2*M2\n", "Vo=N*R0*T/(144*Pt)\n", "Vn=N2*R0*T/(144*Pt)\n", "Vn2=V-Vo\n", "#results\n", "print '%s %.2f %s' %(\"Mass of oxygen =\",mo,\" lb\")\n", "print '%s %.2f %s' %(\"\\n Mass of nitrogen =\",mn,\" lb\")\n", "print '%s %.2f %s' %(\"\\n Partial volume of oxygen =\",Vo,\" cu ft\")\n", "print '%s %.2f %s' %(\"\\n Partial volume of nitrogen =\",Vn,\" cu ft\")\n", "print '%s %.2f %s' %(\"\\n In case 2, Partial volume of nitrogen =\",Vn2,\" cu ft\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass of oxygen = 7.73 lb\n", "\n", " Mass of nitrogen = 3.87 lb\n", "\n", " Partial volume of oxygen = 12.73 cu ft\n", "\n", " Partial volume of nitrogen = 7.27 cu ft\n", "\n", " In case 2, Partial volume of nitrogen = 7.27 cu ft\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2 - Pg 274" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the change in entropy\n", "#Initialization of variables\n", "import math\n", "P=50. #psia\n", "V=4. #cu ft\n", "dv=3. #cu ft\n", "J=778.\n", "T=560. #R\n", "#calculation\n", "ds= 144*P*V*math.log((V+dv)/V) /(J*T)\n", "#results\n", "print '%s %.3f %s' %(\"Change in entropy =\",ds,\"unit\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Change in entropy = 0.037 unit\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3 - Pg 275" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the change in entropy\n", "#Initialization of variables\n", "import math\n", "p1=50. #psia\n", "t1=100+460. #R\n", "R1=48.3\n", "R2=55.2\n", "v1=4. #cu ft\n", "p2=100. #psia\n", "v2=3. #cu ft\n", "t2=200.+460 #R\n", "cv1=0.157\n", "cv2=0.177\n", "cpm=0.219\n", "J=778.\n", "#calculations\n", "m1=144*p1*v1/(R1*t1)\n", "m2=144*p2*v2/(R2*t2)\n", "tf=(m1*cv1*(t1-460) + m2*cv2*(t2-460))/(m1*cv1+m2*cv2)\n", "Po2=v1/(v1+v2) *(tf+460)/t1 *p1\n", "ds=cpm*math.log((tf+460)/t1) - R1/J *math.log(Po2/p1)\n", "dss=ds*m1\n", "#results\n", "print '%s %.4f %s' %(\"Change in entropy =\",dss,\"unit\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Change in entropy = 0.0528 unit\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4 - Pg 277" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the change in entropy\n", "#Initialization of variables\n", "import math\n", "p1=30 #psia\n", "t1=80.+460 #R\n", "R1=48.3\n", "R2=55.2\n", "m1=20. #lb/min\n", "p2=50. #psia\n", "m2=35. #lb/min\n", "t2=160.+460 #R\n", "cp1=0.219\n", "cp2=0.248\n", "J=778\n", "#calculations\n", "tf=(m1*cp1*(t1-460) + m2*cp2*(t2-460))/(m1*cp1+m2*cp2)\n", "Po2=m1/32/(m1/32+m2/28) *p1\n", "ds=cp1*math.log((tf+460)/t1) - R1/J *math.log(Po2/p1)\n", "dss=ds*m1\n", "#results\n", "print '%s %.4f %s' %(\"Change in entropy =\",dss,\"units/min\")\n", "print '%s' %(\"The answer is a bit different fromm textbook due to rounding off error in textbook\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Change in entropy = 1.7754 units/min\n", "The answer is a bit different fromm textbook due to rounding off error in textbook\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5 - Pg 278" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the weight per mole and also the gas constant\n", "#Initialization of variables\n", "import numpy\n", "x=([0.15, 0.08, 0.77])\n", "M=([44, 32, 28])\n", "#calculations\n", "b=len(x)\n", "y=numpy.zeros(b)\n", "yt=numpy.zeros(b)\n", "mt=numpy.zeros(b)\n", "per=numpy.zeros(b)\n", "wt=numpy.zeros(b)\n", "R=numpy.zeros(b)\n", "for i in range (0,b):\n", "\ty[i]=x[i]/M[i]\n", "\n", "yt=sum(y)\n", "for i in range (0,b):\n", "\tmt[i]=y[i]/yt\n", "\tper[i]=mt[i]*100\n", "\n", "wt=1. /yt\n", "R=1545. /wt\n", "\n", "#results\n", "print '%s' %(\"Volumetric analysis\")\n", "print '%s' %('percent by volume')\n", "print (per)\n", "print '%s %.1f %s' %(\"Weight per mole =\",wt,\" lb\")\n", "print '%s %.1f' %(\"\\n Gas constant =\",R)\n", "print '%s' %(\"The answer is a bit different fromm textbook due to rounding off error in textbook\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Volumetric analysis\n", "percent by volume\n", "[ 10.20408163 7.4829932 82.31292517]\n", "Weight per mole = 29.9 lb\n", "\n", " Gas constant = 51.6\n", "The answer is a bit different fromm textbook due to rounding off error in textbook\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6 - Pg 283" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the theoretical air and amount of nitrogen\n", "#Initialization of variables\n", "x1=0.885 #mole fraction of Ch4\n", "x2=0.115 #mole fraction of c2h6\n", "x3=0.4/100. #mole fraction of N2\n", "n1=2. #Moles of Ch4\n", "n2=3.5 #Moles of c2h6\n", "n3=1. #moles of ch4 in case 2\n", "n4=2. #moles of c2h6 in case 2\n", "#calculations\n", "y1=n1*x1\n", "y2=n2*x2\n", "y=y1+y2\n", "vec2=([y1, y2])\n", "air=y/0.21\n", "y3=n3*x1\n", "y4=n4*x2\n", "yy=y3+y4\n", "vec3=([y3 ,y4])\n", "air2=y/0.21 *0.79\n", "#results\n", "print '%s %.2f %s' %(\"Theoretical air =\",air,\" moles of air per mole of fuel\")\n", "print '%s' %(\"Oxygen analysis\")\n", "print(vec2)\n", "print '%s %.2f %s' %(\"\\n Amount of nitrogen =\",air2,\" moles of nitrogen per mole of fuel\")\n", "print '%s' %(\"Dry analysis\")\n", "print(vec3)\n", "print '%s %.3f %s' %(\"total =\",yy,\" moles\")\n", "print '%s' %(\"The answer is a bit different fromm textbook due to rounding off error in textbook\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Theoretical air = 10.35 moles of air per mole of fuel\n", "Oxygen analysis\n", "[1.77, 0.4025]\n", "\n", " Amount of nitrogen = 8.17 moles of nitrogen per mole of fuel\n", "Dry analysis\n", "[0.885, 0.23]\n", "total = 1.115 moles\n", "The answer is a bit different fromm textbook due to rounding off error in textbook\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7 - Pg 283" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the theoretical air fuel ratio\n", "#Initialization of variables\n", "import numpy\n", "x=([0.74, 0.06, 0.01]) #mole fraction of C, H and S respectively\n", "y=([8./3., 8, 1]) #Pounds O2 per pound substance of C,H and S respectively\n", "oxy=0.08 #Oxygen in coal\n", "z=0.232 #mass of coal\n", "#calculations\n", "b=len(x)\n", "pou = numpy.zeros(b)\n", "for i in range (0,b):\n", "\tpou[i]=x[i]*y[i]\n", "\n", "tot=sum(pou)\n", "oxy2=tot-oxy\n", "air=oxy2/z\n", "#results\n", "print '%s %.2f %s' %(\"Theoretical air fuel ratio =\",air,\"lb of air per pound of coal\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Theoretical air fuel ratio = 10.27 lb of air per pound of coal\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8 - Pg 284" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate air fuel ratio and also molal analysis\n", "#Initialization of variables\n", "o2=12.5 #moles of O2\n", "h20=9 #moles of H2O\n", "x=0.21 #Mole fraction of Oxygen in air\n", "M=28.97 #Molar mass of air\n", "M2=56. #molar mass of C4H8\n", "M1=8*12+18. #molecular mass of c8h18\n", "#calculations\n", "air=o2/x\n", "pound=air*M\n", "AR=pound/M1\n", "y1=h20/M2 *100.\n", "y2=o2*(79./21) /M2 *100.\n", "#results\n", "print '%s %.2f %s' %(\"Air fuel ratio =\",AR,\"lb of air per pound of fuel\")\n", "print '%s %.2f %s %.2f %s' %(\"\\n Molal or volumetric analysis is\",y1, \"percent of CO2 and\",y2, \"percent N2\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Air fuel ratio = 15.13 lb of air per pound of fuel\n", "\n", " Molal or volumetric analysis is 16.07 percent of CO2 and 83.97 percent N2\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9 - Pg 285" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the volumetric analysis and also volume of wet products\n", "#Initialization of variables\n", "x=18.5 #Moles of O2\n", "c=12. #Moles of CO2\n", "vap=13. #moles of H2O\n", "P=15. #psia\n", "R=1545. #Universal gas constant\n", "#calculations\n", "excess=x*0.5\n", "M=12*12+2*vap\n", "n2=(x+excess)*79/21.\n", "nt=n2+excess+c\n", "dry=([c, x/2, n2]) \n", "b= len(dry)\n", "for i in range(0,b):\n", "\tdry[i] = dry[i] /nt *100\n", "\n", "wet=nt+vap\n", "fue=100./(M)\n", "mol=wet*fue\n", "vol=mol*R*1460./(144*P)\n", "#results\n", "print '%s' %(\"Volumetric analysis in percentage\")\n", "print (' CO2 O2 N2')\n", "print (dry)\n", "print '%s %d %s' %(\"Volume of wet products =\",vol,\"cfm\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Volumetric analysis in percentage\n", " CO2 O2 N2\n", "[9.55088118249005, 7.362137578169414, 83.08698123934053]\n", "Volume of wet products = 85167 cfm\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10 - Pg 286" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the volumetric analysis\n", "#Initialization of variables\n", "import numpy\n", "from numpy import linalg\n", "from numpy.linalg import inv\n", "A=numpy.array([[1, 1], [0.5, 1]])\n", "B=numpy.array([[1],[ 0.9]])\n", "x=0.9\n", "#calculations\n", "N2=x*79./21.\n", "C=numpy.linalg.solve(A,B)\n", "vec= ([ C[0], C[1], N2])\n", "su=sum(vec)\n", "b= len(vec)\n", "vec2=numpy.zeros(b)\n", "for i in range (0,b):\n", "\tvec2[i]=vec[i]/su *100.;\n", "\n", "#results\n", "print '%s' %(\"Volumetric analysis\")\n", "print '%s' %('CO CO2 N2')\n", "print (vec2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Volumetric analysis\n", "CO CO2 N2\n", "[ 4.56026059 18.24104235 77.19869707]\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11 - Pg 288" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Moles of dry products per pound of coal\n", "#Initialization of variables\n", "c=0.74\n", "ref=0.02\n", "co2=0.12\n", "co=0.1/100.\n", "M=12.\n", "#calcualtions\n", "carbon=c-ref\n", "car2=co2+co\n", "wt=car2*M\n", "amount=carbon/wt\n", "#results\n", "print '%s %.3f %s' %(\"Moles of dry products per pound of coal =\",amount,\" mole\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Moles of dry products per pound of coal = 0.496 mole\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12 - Pg 289" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Number of moles of dry products per pound of fuel\n", "#Initialization of variables\n", "x1=0.128\n", "x2=0.035\n", "x3=0.002\n", "M=12.\n", "N=26.\n", "#calculations\n", "c=x1+x3\n", "mole=12./c\n", "wt=M*M+N\n", "num=mole/wt\n", "#results\n", "print '%s %.3f %s' %(\"Number of moles of dry products per pound of fuel =\",num,\" mole\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of moles of dry products per pound of fuel = 0.543 mole\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13 - Pg 289" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the weight of air and excess air percentage\n", "#Initialization of variables\n", "c=0.74\n", "ref=0.02\n", "co2=0.12\n", "co=0.1/100.\n", "o2=0.065\n", "M=12\n", "x=0.79\n", "M=28.97\n", "#calcualtions\n", "n2=1-(co2+co+o2)\n", "mol=n2/x\n", "wt=mol*M\n", "wt2=0.496\n", "pou=wt2*wt\n", "ta=10.27\n", "EA=(pou-ta)/ta *100\n", "#results\n", "print '%s %.2f %s' %(\"Weight of air per pound of fuel =\",pou,\"lb\")\n", "print '%s %.1f %s' %(\"\\n Excess air percentage =\",EA,\"percent\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Weight of air per pound of fuel = 14.81 lb\n", "\n", " Excess air percentage = 44.2 percent\n" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }