{ "metadata": { "name": "", "signature": "sha256:aa78c4fecb9e6170fff80d7d4acf98ab991ec2677f1baef191ee2d45ad66490b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 12 - Heat Transfer" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1 - Pg 229" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the interface temperature\n", "#Initialization of variables\n", "km1=0.62\n", "km2=0.16\n", "km3=0.4\n", "l1=8. #in\n", "l2=4. #in\n", "l3=4. #in\n", "Tf=1600. #F\n", "Tc=100. #F\n", "#calculations\n", "Rw=l1/12./km1 +l2/12./km2 +l3/12./km3\n", "Rb=l1/12./km1\n", "Ti=Tf-Rb/Rw *(Tf-Tc)\n", "#results\n", "print '%s %.1f %s' %(\"Interface temperature =\",Ti,\"F\")\n", "print '%s' %(\"The answers might differ a bit from textbook due to rounding off error.\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Interface temperature = 1196.0 F\n", "The answers might differ a bit from textbook due to rounding off error.\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2 - Pg 231" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the heat flow and the interface temperature\n", "#Initialization of variables\n", "import math\n", "th=350. #F\n", "tc=150. #F\n", "od1=4.5\n", "id1=4.026\n", "od2=6.5\n", "id2=4.5\n", "k1=32.\n", "k2=0.042\n", "#calculations\n", "Q=2*math.pi*(th-tc)/(math.log(od1/id1) /k1 + math.log(od2/id2) /k2)\n", "r1=math.log(od1/id1) /k1\n", "rt=math.log(od1/id1) /k1 + math.log(od2/id2) /k2\n", "ti=th-r1/rt*(th-tc)\n", "#results\n", "print '%s %.1f %s' %(\"Heat flow =\",Q,\"Btu/hr\")\n", "print '%s %.2f %s' %(\"\\n Interface temperature =\",ti,\" F\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat flow = 143.5 Btu/hr\n", "\n", " Interface temperature = 349.92 F\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3 - Pg 239" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the net energy exchange in the process\n", "#Initialization of variables\n", "import math\n", "Fa=0.045\n", "l=4. #m\n", "b=4. #m\n", "Fe=1.\n", "Ta=540.+460 #R\n", "Tb=1540.+460 #R\n", "#calculations\n", "A=l*b\n", "Q=0.173*A*Fa*Fe*(math.pow((Tb/100.),4) -math.pow((Ta/100.),4))\n", "Q2=416000.\n", "#results\n", "print '%s %d %s' %(\"In case 1, Net energy exchange =\",Q,\"Btu/hr\")\n", "print '%s %d %s' %(\"\\n In case 2, Net energy exchange =\",Q2,\"Btu/hr\")\n", "print '%s' %('The answers are a bit different due to rounding off error in textbook')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "In case 1, Net energy exchange = 18684 Btu/hr\n", "\n", " In case 2, Net energy exchange = 416000 Btu/hr\n", "The answers are a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4 - Pg 239" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the net energy exchange\n", "#Initialization of variables\n", "import math\n", "ea=0.8\n", "eb=0.7\n", "Fa=0.045\n", "l=4. #m\n", "b=4. #m\n", "Fe=1.\n", "Ta=540.+460 #R\n", "Tb=1540.+460 #R\n", "#calculations\n", "A=l*b\n", "ef=ea*eb\n", "Q=0.173*A*Fa*Fe*ef*(math.pow((Tb/100),4) -math.pow((Ta/100),4))\n", "#results\n", "print '%s %d %s' %(\"Net energy exchange =\",\tQ,\"Btu/hr\")\n", "print '%s' %('The answers are a bit different due to rounding off error in textbook')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Net energy exchange = 10463 Btu/hr\n", "The answers are a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5 - Pg 246" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the inside film coefficient\n", "#Initialization of variables\n", "import math\n", "den=61.995 #lb/cu ft\n", "vel=6 #ft/s\n", "t1=100. #F\n", "t2=160. #F\n", "de=2.067 #in\n", "mu=1.238\n", "pr=3.3\n", "#calculations\n", "G=den*vel*3600.\n", "tm=(t1+t2)/2\n", "hc=0.023*0.377/(de/12.) *math.pow(de/12 *G/mu,0.8) *math.pow(pr,0.4)\n", "#results\n", "print '%s %d %s' %(\"Inside film coefficient =\",hc,\"Btu/sq ft hr F\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Inside film coefficient = 1335 Btu/sq ft hr F\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6 - Pg 247" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the inside film coefficient\n", "#Initialization of variables\n", "import math\n", "d=0.5 #in\n", "tm=1000. #F\n", "v=5#ft/s\n", "k=38.2\n", "den=51.2\n", "mu=0.3\n", "#calculations\n", "Nu=7+ 0.025*math.pow((d/12 *v*den*mu/k*3600),0.8)\n", "h=Nu*k/(d/12.)\n", "#results\n", "print '%s %d %s' %(\"Inside film coefficient =\",h,\"Btu/sq ft hr F\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Inside film coefficient = 8624 Btu/sq ft hr F\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7 - Pg 249" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the convective film coefficient\n", "#Initialization of variables\n", "import math\n", "do=2 #in\n", "tf=120. #F\n", "ti=80. #F\n", "rho=0.0709\n", "g=32.17\n", "bet=1/560.\n", "cp=0.24\n", "mu=0.0461\n", "k=0.0157\n", "d=2. #in\n", "Cd=0.45\n", "#calculations\n", "GrPr=math.pow(d/12.,3) *rho*rho *g*3600*3600. *bet*(tf-ti)*cp/(mu*k)\n", "hc=Cd*k/math.pow(d/12.,(1./4.)) *math.pow(GrPr,(1./4.))\n", "#results\n", "print '%s %.3f %s' %(\"Convective film coefficient =\",hc,\"Btu/sq ft hr F\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Convective film coefficient = 0.242 Btu/sq ft hr F\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8 - Pg 251" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the outer film coefficient\n", "#Initialization of variables\n", "import math\n", "tf=220. #F\n", "ti=200. #F\n", "d=2. #in\n", "C=103.7\n", "k=0.394\n", "rho=59.37\n", "hfg=965.2\n", "mu=0.70\n", "#calculations\n", "h=C*math.pow(k*k*k *rho*rho *hfg/((d/12.) *mu*(tf-ti)),(1./4.))\n", "#results\n", "print '%s %d %s' %(\"Outer film coefficient =\",h,\"Btu/sq ft hr F\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Outer film coefficient = 1792 Btu/sq ft hr F\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9 - Pg 252" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the boiling film coefficient\n", "#Initialization of variables\n", "tf=225. #F\n", "a=190.\n", "b=0.043\n", "ti=212. #F\n", "#calculations\n", "hc=a/(1-b*(tf-ti))\n", "hcti=hc*1.25\n", "#results\n", "print '%s %.1f %s' %(\"For a flat copper plate, boiling film coefficient =\",hc,\" Btu/sq ft hr F\")\n", "print '%s %d %s' %(\"\\n For an inclined copper plate, boiling film coefficient =\",hcti,\"Btu/sq ft hr F\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "For a flat copper plate, boiling film coefficient = 430.8 Btu/sq ft hr F\n", "\n", " For an inclined copper plate, boiling film coefficient = 538 Btu/sq ft hr F\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10 - Pg 255" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the heat transferred per foot length of pipe\n", "#Initialization of variables\n", "import math\n", "Do=2.375 #in\n", "hi=1200.\n", "Di=2.067 #in\n", "km=29.2\n", "h0=1500.\n", "L=2.375 #in\n", "t1=220. #F\n", "t4=140. #F\n", "#calculations\n", "U0= 1/(Do/(Di*hi) + (Do/12. *math.log(Do/Di) /(2*km)) + 1./h0)\n", "Q=U0*L*math.pi*(t1-t4)/12.\n", "#results\n", "print '%s %d %s' %(\"Heat transferred per foot length of pipe =\",Q,\"btu/hr\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat transferred per foot length of pipe = 23744 btu/hr\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11 - Pg 255" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the temperature of inner and outer surfaces of pipe\n", "#Initialization of variables\n", "import math\n", "Do=2.375 #in\n", "hi=1200.\n", "Di=2.067 #in\n", "km=29.2\n", "h0=1500.\n", "L=2.375 #in\n", "t1=220. #F\n", "t4=140. #F\n", "#calculations\n", "Re=Do/(Di*hi)\n", "R0=Do/(Di*hi) + (Do/12. *math.log(Do/Di) /(2*km)) + 1./h0\n", "td=Re/R0 *(t1-t4)\n", "ti=t4+td\n", "Req=1./h0\n", "td2=Req/R0 *(t1-t4)\n", "to=t1-td2\n", "#results\n", "print '%s %.1f %s' %(\"The temperature of the inner surface of pipe =\",ti,\" F\")\n", "print '%s %.1f %s' %(\"\\n The temperature of the outer surface of pipe =\",to,\" F\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The temperature of the inner surface of pipe = 176.6 F\n", "\n", " The temperature of the outer surface of pipe = 194.5 F\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12 - Pg 259" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Logarithmic Mean temperature difference \n", "#Initialization of variables\n", "import math\n", "th1=800. #F\n", "th2=300. #F\n", "tc1=100. #F\n", "tc2=400. #F\n", "#calculations\n", "lmtd= ((th1-tc2) - (th2-tc1) )/(math.log((th1-tc2)/(th2-tc1)))\n", "#results\n", "print '%s %d %s' %(\"Logarithmic Mean temperature difference =\",lmtd,\"F\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Logarithmic Mean temperature difference = 288 F\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13 - Pg 262" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the True Mean temperature difference\n", "#Initialization of variables\n", "import math\n", "th1=200. #F\n", "th2=100. #F\n", "tc1=80. #F\n", "tc2=110. #F\n", "#calculations\n", "print '%s' %(\"From the lmtd graph,\")\n", "R=(tc1-tc2)/(th2-th1)\n", "P=(th2-th1)/(tc1-th1)\n", "F=0.62\n", "lmtd= F* ((th1-tc2) - (th2-tc1) )/(math.log((th1-tc2)/(th2-tc1)))\n", "#results\n", "print '%s %.1f %s' %(\"True Mean temperature difference =\",lmtd,\" F\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "From the lmtd graph,\n", "True Mean temperature difference = 28.9 F\n" ] } ], "prompt_number": 13 } ], "metadata": {} } ] }