{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 6 : Second Law of Thermodynamics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.1 Page No : 138" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Temperature of the source in °C is : 37.0\n", "Temperature of the math.sink in °C is : 99.0\n" ] } ], "source": [ "\n", "# Variables\n", "# In first case (T1-T2)/T1=1/6 or T1= 1.2*T2 (i)\n", "# In seond case (T1-(T2-62))/T1= 2/6 or 2*T1 -3*(T2-62)=0 (ii)\n", "# From eq (i) and (ii)\n", "T2= 186/0.6;\t\t\t# in K\n", "\n", "# Calculations\n", "T1= 1.2*T2;\t\t\t# in K\n", "\n", "# Results\n", "print \"Temperature of the source in °C is : \",T2-273\n", "print \"Temperature of the math.sink in °C is : \",T1-273\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.2 Page No : 138" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Power rquired for operating the pump in kW is : 1.074\n", "The value of T1 in °C is : 49.00\n" ] } ], "source": [ "import math \n", "\n", "# Variables\n", "T1 = 25.;\t\t\t# in °C\n", "T2 = 1.; \t\t\t# in °C\n", "T1 = T1 + 273.;\t\t\t# in K\n", "T2 = T2 + 273.;\t\t\t# in K\n", "HT= 2.;\t \t\t# heat transfer across the wall and the roof in MJ/hr\n", "\n", "# Calculations and Results\n", "HT= HT*10**6; \t\t\t# in J/hr\n", "Q = HT* (T1-T2);\t\t\t# in J/hr\n", "COP_heat = T1/(T1-T2);\n", "W_net = Q/COP_heat;\t\t\t# in J/hr\n", "print \"Power rquired for operating the pump in kW is : %.3f\"%(W_net*10.**-3./3600)\n", "\n", "# Part (b)\n", "T2= 25.;\t\t\t# in °C\n", "T2=T2+273;\t\t\t# in K\n", "# COP= T2/(T1-T2) (i)\n", "# COP= HT*(T1-T2)/W_net (ii)\n", "# From (i) and (ii)\n", "T1= math.sqrt(W_net*T2/HT)+T2;\t\t\t# in K\n", "T1= T1-273;\t\t\t# in °C\n", "print \"The value of T1 in °C is : %.2f\"%T1\n", "\n", "# rounding off error" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.3 Page No : 142" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Ratio of heat trasferred to the circulating water to heat trasferred to the engine is : 2.28\n" ] } ], "source": [ "\n", "\n", "# Variables\n", "heatEngineEffi= 32./100;\t\t\t# heat engine efficiency\n", "COP= 5. \t\t\t# COP of heat pump\n", "\n", "# Calculations\n", "# heat engine efficiency = Wnet/Q1 = (Q1-Q2)/Q1\n", "Q1byWnet= 1/heatEngineEffi;\n", "Q2byWnet= (1-heatEngineEffi)*Q1byWnet;\n", "# COP = Q4/Wnet = Q4/(Q4-Q3)\n", "Q4byWnet= COP;\n", "ratio= (Q2byWnet+Q4byWnet)/Q1byWnet;\t\t\t# ratio of heat transferred to the circulating water to heat trasferred to the engine\n", "\n", "# Results\n", "print \"Ratio of heat trasferred to the circulating water to heat trasferred to the engine is : \",ratio\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.4 Page No : 147" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of Carnot Power in kWh is : 10.823\n", "As the actual power produced by the invented engine is more than the Carnot Power, \n", "so inverter claim is not true\n" ] } ], "source": [ "\n", "# Variables\n", "Q = 88;\t\t\t# in MJ\n", "Q=Q*10**3;\t\t\t# in kJ\n", "T1 = 190.;\t\t\t# in °C\n", "\n", "# Calculations\n", "T1 = T1 + 273;\t\t\t# in K\n", "T3 = -15;\t\t\t# in °C\n", "T3 = T3 + 273;\t\t\t# in K\n", "Eta_carnot = (T1 - T3)/T1;\n", "Wnet= Eta_carnot * Q;\t\t\t# in kJ\n", "CarnotPower= Wnet/3600.;\t\t\t# in kWh\n", "\n", "# Results\n", "print \"The value of Carnot Power in kWh is : %.3f\"%CarnotPower\n", "print (\"As the actual power produced by the invented engine is more than the Carnot Power, \");\n", "print (\"so inverter claim is not true\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.5 Page No : 148" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The theoretical minimum power required to drive the heat pump in kW is : 2.058\n", "The theoretical power required to drive the heat pump when it is used as a refrigerator in kW is : 2.22\n" ] } ], "source": [ "\n", "# Variables\n", "T1 = 24.;\t\t \t# in °C\n", "T1 = T1 + 273;\t\t\t# in K\n", "T2 = 2;\t\t \t# in °C\n", "T2 = T2 + 273;\t\t\t# in K\n", "Q = 100; \t\t\t#in MJ/h\n", "Q = Q * 10**3;\t\t\t#in kJ/h\n", "\n", "# Calculations and Results\n", "COP_heatPump = T1/(T1-T2);\n", "W = Q/COP_heatPump;\t\t\t#in kJ/h\n", "W = W/3600.;\t\t\t # in kW\n", "print \"The theoretical minimum power required to drive the heat pump in kW is : %.3f\"%W\n", "\n", "COP_refrigerator = T2/(T1-T2);\n", "W = Q/COP_refrigerator;\t\t\t# in kJ/h\n", "W = W/3600.; \t\t\t# in kW\n", "print \"The theoretical power required to drive the heat pump when it is used as a refrigerator in kW is : %.2f\"%W\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.6 Page No : 150" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Part (a)\n", "The cycle is irreversible\n", "Part (b)\n", "Reversible or irreversible cycle is not possible and the result is impossible\n", "Part (c)\n", "The cycle is reversible\n" ] } ], "source": [ "# Variables\n", "Q1= 278.;\t\t\t# in kJ/s\n", "T1= 283.+273;\t\t\t# in K\n", "T2= 50.+273;\t\t\t# in K\n", "print (\"Part (a)\")\n", "Q2= 208.;\t\t\t# in kJ/s\n", "\n", "# Calculations and Results\n", "# By Clausius inequality \n", "V= Q1/T1-Q2/T2;\n", "if V<0:\n", " print (\"The cycle is irreversible\")\n", "elif V>0:\n", " print (\"Reversible or irreversible cycle is not possible and the result is impossible\")\n", "else:\n", " print (\"The cycle is reversible\")\n", "\n", "print (\"Part (b)\")\n", "Q2= 139.;\t\t\t# in kJ/s\n", "V= Q1/T1-Q2/T2;\n", "if V<0:\n", " print (\"The cycle is irreversible\")\n", "elif V>0:\n", " print (\"Reversible or irreversible cycle is not possible and the result is impossible\")\n", "else:\n", " print (\"The cycle is reversible\")\n", "\n", "print (\"Part (c)\")\n", "Q2= 161.5;\t\t\t# in kJ/s\n", "V= Q1/T1-Q2/T2;\n", "if V<0:\n", " print (\"The cycle is irreversible\")\n", "elif V>0:\n", " print (\"Reversible or irreversible cycle is not possible and the result is impossible\")\n", "else:\n", " print (\"The cycle is reversible\")\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.16 Page No : 155" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The heat rejected in MJ/h is : 60.8\n", "Irreversibility in kJ/h is : 8.114\n" ] } ], "source": [ "\n", "# Variables\n", "Wnet_compresser= 3.;\t \t\t# in kW\n", "Wnet_compresser=Wnet_compresser*3600.;\t\t\t# in kJ/h\n", "Qabsorbed= 50.;\t \t\t # in MJ/h\n", "Qabsorbed=Qabsorbed*10**3;\t\t\t # in kJ/h\n", "\n", "# Calculations and Results\n", "T1 = 46+273;\t\t\t# in K\n", "T2 = 1+273; \t\t\t# in K\n", "Qrejected= Wnet_compresser+Qabsorbed;\t\t\t# in kJ/h\n", "print \"The heat rejected in MJ/h is : \",Qrejected*10**-3\n", "\n", "I= -(-Qrejected/T1+Qabsorbed/T2);\t\t\t# in kJ/h\n", "print \"Irreversibility in kJ/h is : %.3f\"%I\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.17 Page No : 156" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Time taken by the heater to raise the temperature in sec is : 3.34\n", "Entrophy generated during the process in kJ/K is : 20.72\n" ] } ], "source": [ "#Exa 6.17\n", "import math \n", "\n", "\n", "# Variables\n", "T1 = 12.; \t\t\t# in °C\n", "T2 = 92.;\t \t\t# in °C\n", "T1 = T1 + 273.;\t\t\t# in K\n", "T2 = T2 + 273.;\t\t\t# in K\n", "del_T = T2 - T1;\t\t\t# in K\n", "m = 20;\t\t\t # in kg\n", "C_v = 4.187;\n", "s= 1;\n", "\n", "# Calculations and Results\n", "Q = m * s * del_T;\t\t\t# in cal\n", "Q = Q * 4.18;\t \t\t# in J\n", "H = 2;\t \t \t# heat given by the heater in kw\n", "H = H * 10**3;\t\t \t# in J/sec\n", "t = Q/H;\t\t\t #time taken by the heater to raise the temp. in sec\n", "print \"Time taken by the heater to raise the temperature in sec is : %.2f\"%t\n", "\n", "del_phi = m * C_v * math.log(T2/T1);\t\t\t# in kJ/K\n", "print \"Entrophy generated during the process in kJ/K is : %.2f\"%del_phi\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.18 Page No : 156" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Carnot efficiency in % is : 50.18\n", "Efficiency of the heat engine in % is : 50.8\n", "As the efficiency of heat engine cannot be more than Carnot efficiency, Hence engine cannot execute irreversible cycle.\n" ] } ], "source": [ "# Exa 6.18\n", "import math \n", "\n", "# Variables\n", "Q1 = 1000.;\t\t\t# in kW\n", "Q2 = 492.;\t\t\t# in kW\n", "T1 = 285.;\t\t\t# in °C\n", "T1 = T1 + 273;\t\t\t# in K\n", "T2 = 5.;\t\t\t # in °C\n", "T2 = T2 + 273;\t\t\t# in K\n", "\n", "# Calculations and Results\n", "Eta_carnot = (T1-T2)/T1*100;\t\t\t# in percentage\n", "print \"Carnot efficiency in %% is : %.2f\"%Eta_carnot\n", "\n", "Eta_heat = (Q1 - Q2)/Q1*100;\t\t\t# in percentage\n", "print \"Efficiency of the heat engine in % is : \",Eta_heat\n", "if Eta_heat>Eta_carnot:\n", " print (\"As the efficiency of heat engine cannot be more than Carnot efficiency, Hence\\\n", " engine cannot execute irreversible cycle.\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.19 Page No : 156" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The output of the engine in watt is 36.0\n" ] } ], "source": [ "\n", "# Variables\n", "n = 1080.;\t\t\t# in cycle/min\n", "Q_s = 57.;\t\t\t# in J/cycle\n", "T1 = 12.;\t\t\t# in °C\n", "T1 = T1 + 273;\t\t\t# in K\n", "T2 = 2.;\t\t\t# in °C\n", "T2 = T2 + 273;\t\t\t# in K\n", "\n", "# Calculations\n", "# 1-(Q_r/Q_s) = 1- (T2/T1)\n", "Q_r = (T2/T1)*Q_s;\t\t\t# in J/cycle\n", "W = Q_s - Q_r;\t\t\t# in J/cycle\n", "P_o = W * n;\t\t\t# in J/min\n", "P_o = P_o/60;\t\t\t# in W\n", "\n", "# Results\n", "print \"The output of the engine in watt is\",P_o\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.20 Page No : 157" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Minimum power required in kW is : 2.354\n" ] } ], "source": [ "\n", "# Variables\n", "Q2 = 10.**5;\t\t\t# in kJ/hr\n", "T1 = -3.;\t\t\t# in °C\n", "T1 = T1 + 273;\t\t\t# in K\n", "T2 = 22.;\t\t\t# in °C\n", "T2 = T2 + 273;\t\t\t# in K\n", "\n", "# Calculations\n", "COP_heat = 1./(1-T1/T2);\n", "W = Q2/COP_heat;\t\t\t# in kJ/hr\n", "W = W/3600.; \t\t\t# in kW\n", "\n", "# Results\n", "print \"Minimum power required in kW is : %.3f\"%W\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.21 Page No : 158" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "engine efficiency in % is : 66.7\n" ] } ], "source": [ "\n", "# Variables\n", "T_A= 927.+273;\t\t\t# in K\n", "T_B= 127.+273;\t\t\t# in K\n", "T_C= T_B;\t\t\t# in K\n", "\n", "# Calculations\n", "# Q_A= Q_B+Q_C+W = 2*Q_B+W (math.since Q_B=Q_C) (i)\n", "# Q_A/T_A= Q_B/T_B+Q_C/T_C or\n", "# Q_A= 2*Q_B*T_A/T_B (ii)\n", "# From eq (i) and (ii)W= 2*Q_B*(T_A/T_B-1) (iii)\n", "# Dividing (iii) by (ii)\n", "WbyQ_A= (T_A/T_B-1)/(T_A/T_B);\n", "\n", "# Results\n", "print \"engine efficiency in %% is : %.1f\"%(WbyQ_A*100)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.22 Page No : 158" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The heat rejected at B in kJ is : 142.86\n", "The heat rejected at C in kJ is : 857.14\n" ] } ], "source": [ "\n", "# Variables\n", "T_A= 700.;\t\t\t# in K\n", "T_B= 600.;\t\t\t# in K\n", "T_C= 500.;\t\t\t# in K\n", "Q_A= 1200.;\t\t\t# in kJ\n", "\n", "# Calculations\n", "# Q_B+Q_C= Q_A-200 (i)\n", "# Q_A/T_A = Q_B/T_B+Q_C/T_C (ii)\n", "# From eq(i) and (ii)\n", "Q_B= (Q_A*(1/T_B-1/T_A)-200/T_B)/(1/T_B-1/T_C);\t\t\t# in kJ\n", "Q_C= Q_A-Q_B-200;\t\t\t# in kJ\n", "\n", "# Results\n", "print \"The heat rejected at B in kJ is : %.2f\"%Q_B\n", "print \"The heat rejected at C in kJ is : %.2f\"%Q_C\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.23 Page No : 159" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "intermediate temperature in °C is : 100\n" ] } ], "source": [ "\n", "# Variables\n", "T1= 180+273;\t\t\t# in K\n", "T2= 20+273;\t\t\t# in K\n", "\n", "# Calculations\n", "# W_A/Q1= 1-T3/T1 (i)\n", "# W_B/QB= 1-T2/T3 (ii)\n", "# W_A= W_B (iii)\n", "# Q1= Q_B+W_A (iv)\n", "# From eq(i),(ii),(iii) and (iv)\n", "T3= (T1+T2)/2;\t\t\t# in K\n", "\n", "# Results\n", "print \"intermediate temperature in °C is : \",T3-273\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.24 Page No : 160" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Least power required in kW is : 0.305\n" ] } ], "source": [ "\n", "# Variables\n", "Q2 = 1.75;\t\t\t# in kJ/sec\n", "T1 = -15;\t\t\t# in °C\n", "T1 = T1 + 273;\t\t\t# in K\n", "T2 = 30;\t\t\t# in °C\n", "T2 = T2 + 273;\t\t\t# in K\n", "\n", "# Calculations\n", "del_T = T2 - T1;\t\t\t# in K\n", "# Q2/W_net = T2/(del_T)\n", "W_net = Q2 * del_T/T1;\t\t\t# in kW\n", "\n", "# Results\n", "print \"Least power required in kW is : %.3f\"%W_net\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }