{ "metadata": { "name": "", "signature": "sha256:7515996c0789938329f86975cb5205356a100488f9513af4795fb2fe55a812d5" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5 : principles of statistical\n", "thermodynamics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.1 pg : 104" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import factorial\n", "\t\t\t\n", "# Variables\n", "N1 = 1.\n", "N2 = 1.\n", "N3 = 3.\n", "N4 = 1.\n", "\t\t\t\n", "# Calculations\n", "N = N1+N2+N3+N4\n", "sig = factorial(N) /(factorial(N1) *factorial(N2)*factorial(N3)*factorial(N4))\n", "\t\t\t\n", "# Results\n", "print \"No. of ways of arranging = %d \"%(sig)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "No. of ways of arranging = 120 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.2 pg : 104" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\t\t\n", "# Variables\n", "N = 6.\n", "g = 4.\n", "\t\t\t\n", "# Calculations\n", "sig = factorial(g+N-1) /(factorial(g-1) *factorial(N))\n", "\t\t\t\n", "# Results\n", "print \"No. of ways of arranging = %d \"%(sig)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "No. of ways of arranging = 84 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3 pg : 104" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import factorial\t\t\t\n", "# Variables\n", "N = 6.\n", "g = 8.\n", "\t\t\t\n", "# Calculations\n", "sig = factorial(g) /(factorial(N) *factorial(g-N))\n", "\t\t\t\n", "# Results\n", "print \"No. of ways = %d \"%(sig)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "No. of ways = 28 \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.4 pg : 121" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline\n", "\n", "\n", "import math \n", "from matplotlib.pyplot import bar\n", "\n", "# Variables\n", "N0 = 1.\n", "\t\t\t\n", "# Calculations\n", "N1 = 3/math.e\n", "N2 = 6/math.e**2\n", "N3 = 10/math.e**3\n", "N = N0+N1+N2+N3\n", "ei = [0, 1, 2, 3]\n", "\n", "f0 = N0/N\n", "f1 = N1/N\n", "f2 = N2/N\n", "f3 = N3/N\n", "fi = [f0, f1, f2, f3]\n", "\t\t\t\n", "# Results\n", "print \"fractional population of level 0 = %.3f\"%(f0)\n", "print \" fractional population of level 1 = %.3f\"%(f1)\n", "print \" fractional population of level 2 = %.3f\"%(f2)\n", "print \" fractional population of level 3 = %.3f\"%(f3)\n", "bar(ei,fi,0.1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "fractional population of level 0 = 0.293\n", " fractional population of level 1 = 0.323\n", " fractional population of level 2 = 0.238\n", " fractional population of level 3 = 0.146\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 1, "text": [ "<Container object of 4 artists>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD7dJREFUeJzt3V+IHed5x/HvidailaxtrFa1qKx0QVbrGGwSU5RtZbcn\nqTCbXESGXMgmwVAHVxdV7YtQhKBE66uigikEgaOCCmlqqotWMYLKlW3oUJG6sjbVv9Zao1UqkBTX\nOLbrWA6hK3R68c5Gk6NdvTPn75x9vx846My875x9eLz+ndl35uyCJEmSJEmSJEmSJEmSJEmSamAK\nmAUuALsXGd8OnAFOAT8AvlAYuwSczcfe6GuVkqSurQDmgAngDuA08Om2OasLzx/I5y/4b2BtH+uT\nJFXwicj4FkKIXwLmgUOEM/uijwvP7wR+3Dbe6KI+SVIPxUJ/A3C5sH0l39fuMeA88DLwTGF/C3gN\nmAGe7rxMSVIvjEXGWyVf56X88QjwXeC38/1bgbeBdcCrhGsDx6uXKUnqhVjoXwU2FrY3Es72l3I8\nf81fBd4jBD7Au8D3CMtFvxD6mzZtal28eLFCyZIk4CJwb9WDYss7M8BmwoXclcAO4EjbnE3cXLd/\nKP/3PWAVsCbfXg08Cpxr/wIXL16k1WqN7GPv3r1Dr8H6h19HivWPcu3Lof48eyuLnelfB3YBxwh3\n8hwkrN3vzMcPAF8BniRc6L0GPJ6PrQcOF77Oi8ArnRQpSeqNWOhDuDj7ctu+A4Xnf5k/2v0Q+EyH\ndUmS+iC2vKOIZrM57BK6Yv3DNcr1j3LtMPr1d6oO99C38vUpSVJJjUYDOshwz/QlKSGGviQlxNCX\npIQY+pKUEENfkhJi6EtSQgx9SUqIoS9JCTH0JSkhhr4kJcTQl6SEGPqJGx9fS6PRuO1jfNy/bS8t\nF/7CtcSFX9oU638D/xtJ9eIvXJMkRRn6kpQQQ1+SEmLoS1JCDH1JSoihL0kJMfQlKSGGviQlpEzo\nTwGzwAVg9yLj24EzwCngB8AXKhwrSRqg2Ke5VgBvAduAq8BJ4AngfGHOauDj/PkDwPeAe0seC34i\nd6j8RK40mvr1idwtwBxwCZgHDhHO7Is+Ljy/E/hxhWMlSQMUC/0NwOXC9pV8X7vHCGfwLwPPVDxW\nkjQgY5Hxsj/Tv5Q/HgG+C9xXpYjp6emfP282mzSbzSqHS9Kyl2UZWZZ1/Tqx9aBJYJpwQRZgD3AD\n2HebYy4SlnY2lzzWNf0hck1fGk39WtOfIYT3BLAS2AEcaZuzqfCFH8r/fa/ksZKkAYot71wHdgHH\nCHfjHCSs3e/Mxw8AXwGeJFysvQY8HjlWkjQk/hGVxLm8I42mkf4jKrE/1+ef7JOk3qjFmX65m4Q8\n2+wHz/Sl0TTSZ/qSpMEw9CUpIYa+JCXE0JekhBj6kpQQQ1+SEmLoS1JCDH1JSoihL0kJMfQlKSGG\nviQlxNCXpIQY+pKUEENfkhJi6EtSQgx9SUqIoS9JCTH0JSkhhr4kJcTQl6SEGPqSlJAyoT8FzAIX\ngN2LjH8VOAOcBb4PPFgYu5TvPwW80U2hkqTujUXGVwD7gW3AVeAkcAQ4X5jzQ+D3gQ8JbxB/DUzm\nYy2gCbzfs4olSR2LnelvAeYIZ+zzwCFge9uc1wmBD3ACuKdtvNFdiZKkXomF/gbgcmH7Sr5vKV8H\njha2W8BrwAzwdCcFSpJ6J7a806rwWp8HngK2FvZtBd4G1gGvEq4NHL/10OnC82b+kCQtyLKMLMu6\nfp3Y0sskIZGn8u09wA1gX9u8B4HD+by5JV5rL3ANeL5tf6vce0uDVqvKe5DKaDQaxPtv76W6Cf/v\nVl8+jy3vzACbgQlgJbCDcCG36FOEwP8avxj4q4A1+fPVwKPAuaoFSpJ6J7a8cx3YBRwj3MlzkHDn\nzs58/ADwTeAu4IV83zzhAvB6wpvBwtd5EXilV4VLkqqrw501Lu8Mkcs70mjq1/KOJGkZMfQlKSGG\nviQlxNCXhmh8fC2NRuO2j/HxtcMuU8uIF3IT54Xc4bL/6pQXciVJUYa+JCXE0JekhBj6kpQQQ1+S\nEmLoS1JCDH1JSoihL0kJMfQlKSGGviQlxNCXpIQY+pKUEENfkhJi6EtSQgx9SUqIoS9JCTH0JSkh\nhr4kJaRM6E8Bs8AFYPci418FzgBnge8DD1Y4VpI0QLG/r7gCeAvYBlwFTgJPAOcLc34XeBP4kBDy\n08BkyWPBv5E7VP6N1uGy/+pUv/5G7hZgDrgEzAOHgO1tc14nBD7ACeCeCsdKkgYoFvobgMuF7Sv5\nvqV8HTja4bGSpD4bi4xX+Zny88BTwNbqx04XnjfzhyRpQZZlZFnW9evE1oMmCYk8lW/vAW4A+9rm\nPQgczufNVTzWNf0hck15uOy/OtWvNf0ZYDMwAawEdgBH2uZ8ihD4X+Nm4Jc9VpI0QLHlnevALuAY\n4W6cg4S7b3bm4weAbwJ3AS/k++YJF3GXOlaSNCSVfzToA5d3hsjlheGy/+pUv5Z3JEnLiKEvSQkx\n9CUpIYa+JCXE0JekhBj6kpQQQ1+SEmLoS1JCDH1JSoihL0kJMfQlKSGGviQlxNCXpIQY+pKUEENf\nkhJi6EtSQgx9SUqIoS9JCTH0JSkhhr4kJcTQl6SEGPqSlBBDX5ISUib0p4BZ4AKwe5Hx+4DXgZ8B\n32gbuwScBU4Bb3RcpSSpJ8Yi4yuA/cA24CpwEjgCnC/MeQ/4U+CxRY5vAU3g/W4LlSR1L3amvwWY\nI5yxzwOHgO1tc94FZvLxxTS6qE+S1EOx0N8AXC5sX8n3ldUCXiO8KTxdrTRJUq/FlndaXb7+VuBt\nYB3wKuHawPFbp00XnjfzhyRpQZZlZFnW9evEll4mCYk8lW/vAW4A+xaZuxe4Bjy/xGstNd4q997S\noNXq9j1I7RqNBvH+2/t+sf/qVPjeqb58HlvemQE2AxPASmAH4ULuojW0ba8C1uTPVwOPAueqFihJ\n6p3Y8s51YBdwjHAnz0HCnTs78/EDwHrCXT3jhJ8CngXuB34dOFz4Oi8Cr/Swdknq2Pj4Wj766IPo\nvDVr7uInP1k+NyDW4c4al3eGyOWF4bL/w1Ou91DX/vdreUeStIwY+pKUEENfkhJi6EtSQgx9SUqI\noS9JCTH0JSkhhr4kJcTQl6SEGPqSlBBDX5ISYuhLUkIMfUlKiKEvSQkx9CUpIYa+JCXE0JekhBj6\nkpQQQ1+SEmLoS1JCDH1JSoihL0kJMfQlKSFlQn8KmAUuALsXGb8PeB34GfCNisdKkgaoERlfAbwF\nbAOuAieBJ4DzhTnrgN8EHgM+AJ6vcCxAC1qlSm21ysxTFY1Gg3j/7X2/2P/hKdd7qGv/Q/3RDL9F\n7Ex/CzAHXALmgUPA9rY57wIz+XjVYyVJAxQL/Q3A5cL2lXxfGd0cK0nqg7HIeDc/01Q4drrwvJk/\nJEkLsiwjy7KuXycW+leBjYXtjYQz9jIqHDtd8iUlKU3NZpNms/nz7eeee66j14kt78wAm4EJYCWw\nAziyxNz2CwpVjpUkDUDsTP86sAs4Rrgb5yDh7pud+fgBYD3hzpxx4AbwLHA/cG2JYyVJQ1L5dp8+\n8JbNIfKWweGy/8PjLZuSpGXP0JekhBj6kpQQQ1+SEmLoS1JCDH1JSoihL0kJMfQlKSGGviQlxNCX\npIQY+pKUEENfkhJi6EtSQgx9SUqIoS9JCTH0JSkhhr4kJcTQl6SEGPqSlBBDX5ISYuhLUkIMfUlK\niKEvSQkpE/pTwCxwAdi9xJxv5eNngM8W9l8CzgKngDc6rlKS1BNjkfEVwH5gG3AVOAkcAc4X5nwJ\nuBfYDHwOeAGYzMdaQBN4v2cVS5I6FjvT3wLMEc7Y54FDwPa2OV8GvpM/PwF8Eri7MN7oukpJUk/E\nQn8DcLmwfSXfV3ZOC3gNmAGe7rxMSVIvxJZ3WiVfZ6mz+YeBHwHrgFcJ1waO3zptuvC8mT8kSQuy\nLCPLsq5fJ7b0MklI5Kl8ew9wA9hXmPNtICMs/UAI9j8A3ml7rb3ANeD5tv2tcu8tDVqtsu9BKqvR\naBDvv73vF/s/POV6D3Xtf6i/+vJ5bHlnhnCBdgJYCewgXMgtOgI8mT+fBP6XEPirgDX5/tXAo8C5\nqgVKknontrxzHdgFHCPcyXOQcOfOznz8AHCUcAfPHPAx8Ef52HrgcOHrvAi80qvCJUnV1eHOGpd3\nhsjlheGy/8Pj8o4kadkz9CUpIYa+JCXE0JekhBj6kpQQQ1+SEmLoS1JCDH1JSoihL0kJMfQlKSGG\nviQlxNCXpIQY+pKUEENfkhJi6EtSQgx9SUqIoS9JCTH0JSkhhr4kJcTQl6SEGPqSlBBDX5ISUib0\np4BZ4AKwe4k538rHzwCfrXisJGlAYqG/AthPCO/7gSeAT7fN+RJwL7AZ+GPghQrHjrwsy4ZdQtLs\n//DY+9EUC/0twBxwCZgHDgHb2+Z8GfhO/vwE8ElgfcljR57f+MNl/4fH3o+mWOhvAC4Xtq/k+8rM\n+Y0Sx0qSBigW+q2Sr9PothBJ0vBNAv9c2N7DrRdkvw08XtieBe4ueSyEJaCWDx8+fPio9JijD8aA\ni8AEsBI4zeIXco/mzyeBf69wrCSpZr4IvEV4V9mT79uZPxbsz8fPAA9FjpUkSZK0nHTzIa86iNXf\nBD4ETuWPPx9YZXF/A7wDnLvNnDr3PlZ/k/r2fiPwL8B/Af8JPLPEvLr2v0z9Terb/18i3Ep+GngT\n+Isl5tW1/2Xqb1LD/q8gLPFMAHcQvzbwOW5eG6iDMvU3gSMDraq8RwjfyEuFZp17D/H6m9S39+uB\nz+TP7yQsd47S936Z+pvUt/8Aq/J/xwi9fbhtvM79h3j9TSr0f1C/e6fTD3ndPaD6Ysp+0Kyut64e\nBz64zXidew/x+qG+vf8fwkkCwDXgPOEzLEV17n+Z+qG+/Qf4af7vSsIJ3Ptt43XuP8Trhwr9H1To\nd/ohr3v6XFdZZepvAb9H+PHwKOFXT4yKOve+jFHp/QThJ5YTbftHpf8TLF5/3fv/CcIb1zuEpao3\n28br3v9Y/ZX6P9aHAhfTKjmv/d2q7HH9VqaO/yCsf/6UcNfSS8Bv9bOoHqtr78sYhd7fCfwD8Czh\njLld3ft/u/rr3v8bhCWqXwGOEZZDsrY5de5/rP5K/R/Umf7VvKgFGwnvprebc0++rw7K1P8RN38M\ne5mw9r+2/6X1RJ17X0bde38H8I/A3xH+h2xX9/7H6q97/xd8CPwT8Dtt++ve/wVL1V/L/nfzIa86\nKFP/3dw8W9hCWP+vkwnKXcitW+8XTLB0/XXufQP4W+CvbjOnzv0vU3+d+/9rhDV6gF8G/hX4w7Y5\nde5/mfpr2/9uPuRVB7H6/4RwS9tp4N8I3zx18ffAj4D/I6xdPsVo9T5Wf517/zDhx/PT3Lyl7ouM\nTv/L1F/n/j9AWP44DZwF/izfPyr9L1N/nfsvSZIkSZIkSZIkSZIkSZIkSZIkScvD/wNmMBds+uNg\nIAAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x103672c90>" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }