{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 16 Combustion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.1 Pg:738" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Molecule is C7 H17\n" ] } ], "source": [ "#Initialization of variables\n", "per=85\n", "#calculations\n", "a=per/12\n", "b=100-per\n", "ad=1.13*a\n", "bd=1.13*b\n", "#results\n", "print \"Molecule is C%d H%d\"%(ad,bd+1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.2 Pg:738" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Oxygen = 8.74 and Nitrogen = 32.90\n", "\n", "Equation is C7.333 H6 + 8.74 O2 + 32.85 N2 = 7.333 CO2 + 3 H2O + 0.03120 SO2 + 32.90 N2\n" ] } ], "source": [ "#Initialization of variables\n", "per=0.071 #mass fraction of nitrogen\n", "#calculations\n", "O2=8.74\n", "N2=per/2 + 3.76*O2\n", "Nin=32.85\n", "CO2=7.333\n", "H2o=3\n", "So2=0.0312\n", "#results\n", "print \"Oxygen = %.2f and Nitrogen = %.2f\"%(O2,N2)\n", "print \"\\nEquation is C%.3f H%d + %.2f O2 + %.2f N2 = %.3f CO2 + %d H2O + %.5f SO2 + %.2f N2\"%(CO2,2*H2o,O2,Nin,CO2,H2o,So2,N2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.3 Pg:739" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Air fuel ratio = 12.06 lbm air/lbm fuel\n", "\n", "In dry air, Air-fuel ratio = 9.9 lbm air/lbm fuel as fired\n" ] } ], "source": [ "#Initialization of variables\n", "M=29\n", "m1=8.74\n", "m2=32.85\n", "fuel=100 #lbm\n", "#calculations\n", "mass=M*(m1+m2)\n", "AF=mass/fuel\n", "a2=9.75\n", "b2=12.19\n", "AF2=mass/(fuel+a2+b2)\n", "#results\n", "print \"Air fuel ratio = %.2f lbm air/lbm fuel\"%(AF)\n", "print \"\\nIn dry air, Air-fuel ratio = %.1f lbm air/lbm fuel as fired\"%(AF2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.4 Pg:740" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mass of dry flue gases = 12.50 lbm dry flue gas/lbm fuel ash and moisture free\n", "\n", " Mass of dry flue gases = 10.25 lbm dry flue gas/lbm fuel as fired \n", "\n", " Energy carried away = 187079.8 btu/mol coal as fired which is same as = 1534.2 Btu/lbm mol coal \n", "The answers are a bit different due to rounding off errors in textbook\n" ] } ], "source": [ "#Initialization of variables\n", "m1=322.3 #Mass of Co2\n", "m2=2 #Mass of SO2\n", "m3=926 #Mass of N2\n", "basis=121.94 #Basis taken\n", "#calculations\n", "m=m1+m2+m3\n", "ratio=m/basis\n", "dh=5777 #Btu/mol\n", "h1=dh*7.364\n", "h2=14037\n", "h3=130501\n", "H=h1+h2+h3\n", "hrat=H/basis\n", "#results\n", "print \"Mass of dry flue gases = %.2f lbm dry flue gas/lbm fuel ash and moisture free\"%(m/100)\n", "print \"\\n Mass of dry flue gases = %.2f lbm dry flue gas/lbm fuel as fired \"%(ratio)\n", "print \"\\n Energy carried away = %.1f btu/mol coal as fired which is same as = %.1f Btu/lbm mol coal \"%(H, hrat)\n", "print \"The answers are a bit different due to rounding off errors in textbook\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.6 Pg:741" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Final orsat composition is 1 CO2 + 0.22 H20 + 7.52 N2\n", "\n", " Percentage of co2 on a wet basis = 11.4 percent\n", "\n", " percentage of co2 on a dry basis = 11.74 percent\n" ] } ], "source": [ "#Initialization of variables\n", "p=14.7 #psia\n", "ps=0.363 #psia\n", "n2=7.52 #moles\n", "n1=1 #moles\n", "#calculations\n", "x= (n1+n2)*ps/p /(1-ps/p)\n", "n=n1+n2+x\n", "y1=n1/n\n", "y2=n1/(n1+n2)\n", "#results\n", "print \"Final orsat composition is %d CO2 + %.2f H20 + %.2f N2\"%(n1, x, n2)\n", "print \"\\n Percentage of co2 on a wet basis = %.1f percent\"%(y1*100)\n", "print \"\\n percentage of co2 on a dry basis = %.2f percent\"%(y2*100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.7 Pg:742" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Air fuel ratio = 11.3 lbm air/lbm fuel\n" ] } ], "source": [ "#Initialization of variables\n", "N2=78.1\n", "M=29\n", "co2=8.7\n", "co=8.9\n", "x4=0.3\n", "x5=3.7\n", "x6=14.7\n", "#calculations\n", "O2=N2/3.76\n", "Z=(co2+co+x4)/8\n", "AF=(O2+N2)*M/(Z*113)\n", "#results\n", "print \"Air fuel ratio = %.1f lbm air/lbm fuel\"%(AF)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.8 Pg:743" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Air fuel ratio = 10.2 lbm air/lbm fuel as fired\n" ] } ], "source": [ "#Initialization of variables\n", "basis=100 #lbm\n", "x1=0.6\n", "ash=12 #lbm\n", "N2=79.7\n", "M=29\n", "#calculations\n", "x=ash/x1\n", "C=(1-x1)*x\n", "O2=N2/3.76\n", "a= (14.6+0.2)/(5.83-0.66)\n", "AF=(O2+N2)*M/(a*100)\n", "#results\n", "print \"Air fuel ratio = %.1f lbm air/lbm fuel as fired\"%(AF)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.9 Pg:744" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Air fuel ratio = 11.4 lbm air/lbm fuel\n" ] } ], "source": [ "#Initialization of variables\n", "N2=78.1 #Moles of Nitrogen\n", "M=29 #Molar mass of Air\n", "ba=2.12 #Basis\n", "x4=0.3 #Moles of Ch4\n", "x5=3.7 #Moles of H2\n", "x6=14.7 #moles of H2o\n", "#calculations\n", "O2=N2/3.76\n", "O2=N2/3.76\n", "Z=(x4*4+x5*2+x6*2)/17\n", "AF=(O2+N2)*M/(Z*113)\n", "#results\n", "print \"Air fuel ratio = %.1f lbm air/lbm fuel\"%(AF)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.10 Pg:745" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Air fuel ratio = 11.3 lbm air/lbm fuel\n" ] } ], "source": [ "#Initialization of variables\n", "N2=78.1 #Moles of Nitrogen\n", "M=29 #Molar mass of Air\n", "ba=2.12 #Basis\n", "x4=0.3 #Moles of Ch4\n", "x5=3.7 #Moles of H2\n", "x6=14.7 #moles of H2o\n", "#calculations\n", "O2=N2/3.76\n", "c=14.7\n", "b= x4*4 + x5*2 + x6*2\n", "a=b/ba\n", "AF=(O2+N2)*M/(a*12 + b)\n", "#results\n", "print \"Air fuel ratio = %.1f lbm air/lbm fuel\"%(AF)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.11 Pg:746" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Air fuel ratio = 11.3 lbm air/lbm fuel\n" ] } ], "source": [ "#Initialization of variables\n", "co2=8.7 #Moles of CO2\n", "co=8.9 #Moles of CO\n", "N2=78.1 #Moles of Nitrogen\n", "M=29 #Molar mass of Air\n", "ba=2.12 #Basis\n", "x4=0.3 #Moles of Ch4\n", "x5=3.7 #Moles of H2\n", "x6=14.7 #moles of H2o\n", "#calculations\n", "O2=N2/3.76\n", "c=14.7\n", "Z=2.238\n", "X=(Z*17-x4*4-x5*2)/2\n", "a=co2+co/2+x4+x6/2\n", "b=3.764*a\n", "AF=(O2+N2)*M/(Z*113)\n", "#results\n", "print \"Air fuel ratio = %.1f lbm air/lbm fuel\"%(AF)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.12 Pg:747" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Air fuel ratio = 11.37\n" ] } ], "source": [ "#Initialization of variables\n", "x1=8.7 #Moles of Co2\n", "x2=8.9 #Moles of CO\n", "x3=0.3 #Moles of O2\n", "N=78.1 #Moles of N2\n", "z=113 #Af factor\n", "M=29 #Molar mass of air\n", "#calculations\n", "co2=(x1+x2+x3)*100/(N+x1+x2+x3)\n", "a=2.325\n", "AF=103*M/(a*z)\n", "#results\n", "print \"Air fuel ratio = %.2f\"%(AF)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.13 Pg:748" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Nitrogen = 87.1 percent\n", "\n", "Equation is a(96 CH4 + 3 H2+ 1 CO) + 87.1/3.76 O2 + 87.1 N2 = 10.8 CO2 + 1.2 CO + 0.6 H2 + 0.3 CH4 + 87.1 N2\n" ] } ], "source": [ "#Initialization of variables\n", "co=1.2 #Moles of CO\n", "co2=10.8 #Moles of CO2\n", "#calculations\n", "H2=co/2\n", "ch4=0.3\n", "N2=88-H2-ch4\n", "#results\n", "print \"Nitrogen = %.1f percent\"%(N2)\n", "print \"\\nEquation is a(96 CH4 + 3 H2+ 1 CO) + %.1f/3.76 O2 + %.1f N2 = %.1f CO2 + %.1f CO + %.1f H2 + %.1f CH4 + %.1f N2\"%(N2,N2,co2,co,H2,ch4,N2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.14 Pg:748" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Higher heating value = -2363996 Btu\n" ] } ], "source": [ "#Initialization of variables\n", "dH=-2369859 #Btu\n", "r=1.986 #Gas constant\n", "dn=5.5 #Change in number of moles\n", "T=536.7 #R\n", "#calculations\n", "dQ=dH+dn*r*T\n", "#results\n", "print \"Higher heating value = %d Btu\"%(dQ)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.15 Pg:749" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "from steam tables,\n", "Lower heating value = -2203398 Btu/lbm\n", "The answers are a bit different due to rounding off error in textbook.\n" ] } ], "source": [ "#Initialization of variables\n", "M2=18 #Molar mass of water\n", "M=170 #Molar mass of octane\n", "p=0.4593 #Pressure of octane #psia\n", "print \"from steam tables,\"\n", "vfg=694.9 \n", "J=778.2\n", "m=9*18 #Mass of water\n", "u1=-2363996 #Btu\n", "#calculations\n", "hfg=1050.4 #Btu/lbm\n", "ufg= hfg- p*vfg*144/J\n", "dU=ufg*m \n", "Lhv=u1+dU\n", "#results\n", "print \"Lower heating value = %d Btu/lbm\"%(Lhv)\n", "print \"The answers are a bit different due to rounding off error in textbook.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.16 Pg:750" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "From Table B-10,\n", "Heat of reaction = -2202154 Btu\n", "The answers are a bit different due to rounding off error in textbook.\n" ] } ], "source": [ "#Initialization of variables\n", "n1=8 #Moles of CO2\n", "n2=9 #Moles of H2O\n", "n3=1 #Moles of Octane\n", "n4=12.5 #Moles of Oxygen\n", "print \"From Table B-10,\"\n", "U11=3852 #Internal energy at 1000 R of CO2\n", "U12=115 #Internal energy at 537 R of CO2\n", "U21=3009 #Internal energy at 1000 R of H2O\n", "U22=101 #Internal energy at 537 R of H2O\n", "U31=24773 #Internal energy at 1000 R of Octane\n", "U32=640 #Internal energy at 537 R of Octane\n", "U41=2539 #Internal energy at 1000 R of Oxygen\n", "U42=83 #Internal energy at 537 R of Oxygen\n", "H=-2203389 #heat Btu\n", "#calculations\n", "dU1=n1*(U11-U12)+n2*(U21-U22)\n", "dU2=n3*(U31-U32)+n4*(U41-U42)\n", "Q=H+dU1-dU2\n", "#results\n", "print \"Heat of reaction = %d Btu\"%(Q)\n", "print \"The answers are a bit different due to rounding off error in textbook.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.17 Pg:751" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "from table B-10,\n", "Upon interpolating, T2 = 5271 R\n" ] } ], "source": [ "#Initialization of variables\n", "n1=8 #Moles of CO2\n", "n2=9 #Moles of H2O\n", "n3=47 #Moles of N2\n", "print \"from table B-10,\"\n", "h1=118 #Enthalpy of CO2\n", "h2=104 #Enthalpy of H2O\n", "h3=82.5 #Enthalpy of N2\n", "Q=2203279 #Btu\n", "#calculations\n", "U11=n1*h1+n2*h2+n3*h3\n", "U12=U11+Q\n", "T2=5271 #R\n", "#results\n", "print \"Upon interpolating, T2 = %d R\"%(T2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.18 Pg:752" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "In case 1, Equilibrium constant = 38.5 \n", "\n", "In case 2, Equilibrium constant = 1480.1 \n" ] } ], "source": [ "#Initialization of variables\n", "n1=0.95\n", "n2=0.05\n", "n3=0.025\n", "P=147 #psia\n", "pa=14.7 #psia\n", "#calculations\n", "n=n1+n2+n3\n", "p1=n1/n *P/pa\n", "p2=n2/n *P/pa\n", "p3=n3/n *P/pa\n", "Kp1= p1/(p2*p3**0.5)\n", "Kp2= p1**2 /(p2**2 *p3)\n", "#results\n", "print \"In case 1, Equilibrium constant = %.1f \"%(Kp1)\n", "print \"\\nIn case 2, Equilibrium constant = %.1f \"%(Kp2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:16.19 Pg:753" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "percentage of dissociation = 34.3 percent\n", "\n", " If pressure =10 . Degree of dissociation = 18 percent\n" ] } ], "source": [ "from sympy.abc import x,y\n", "from sympy import solve,N\n", "#Initialization of variables\n", "kp=5 \n", "#calculations\n", "vec=solve(24*x**3 + 3*x-2,x)\n", "x=N(vec[2],6)\n", "vec2=solve(249*y**3 +3*y-2,y)\n", "y=N(vec2[2],6)\n", "#results\n", "print \"percentage of dissociation = %.1f percent\"%(x*100)\n", "print \"\\n If pressure =10 . Degree of dissociation = %d percent\"%(y*100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Ex:16.20 Pg:754" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Extent of reaction= 78 percent\n" ] } ], "source": [ "from sympy.abc import x,y\n", "from sympy import solve,N\n", "\n", "#Initialization of variables\n", "vec=solve(24*x**3 +48*x**2 + 7*x -4,x)\n", "x=N(vec[1],6) *100\n", "#results\n", "print \"Extent of reaction= %d percent\"%(100-x)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }