{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 14 Psychrometrics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:14.1 Pg:659" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "from steam tables,\n", "part a\n", "partial pressure of water = 0.15207 psia\n", "\n", " dew temperature = 46 F\n", "part b\n", "density of water = 0.000474 lbm/ft**3\n", "\n", " in case 2, density of water = 0.000474 lbm/ft**3\n", "\n", " density of air = 0.072765 lbm/ft**3\n", "part c\n", "specific humidity = 0.0065 lbm steam/lbm air\n", "part d\n", "In method 1, Degree of saturation = 0.293\n", "\n", " In method 2, Degree of saturation = 0.293\n" ] } ], "source": [ "#Initialization of variables\n", "t1=80+460 #R\n", "ps=0.5069 #psia\n", "print \"from steam tables,\"\n", "vs=633.1 #ft**3/lbm\n", "phi=0.3\n", "R=85.6\n", "Ra=53.3\n", "p=14.696\n", "#calculations\n", "tdew=46 #F\n", "pw=phi*ps\n", "rhos=1/vs\n", "rhow=phi*rhos\n", "rhow2= pw*144/(R*t1)\n", "pa=p-pw\n", "rhoa= pa*144/(Ra*t1)\n", "w=rhow/rhoa\n", "mu=phi*(p-ps)/(p-pw)\n", "Ws=0.622*(ps/(p-ps))\n", "mu2=w/Ws\n", "#results\n", "print \"part a\"\n", "print \"partial pressure of water = %.5f psia\"%(pw)\n", "print \"\\n dew temperature = %d F\"%(tdew)\n", "print \"part b\"\n", "print \"density of water = %.6f lbm/ft**3\"%(rhow)\n", "print \"\\n in case 2, density of water = %.6f lbm/ft**3\"%(rhow2)\n", "print \"\\n density of air = %.6f lbm/ft**3\"%(rhoa)\n", "print \"part c\"\n", "print \"specific humidity = %.4f lbm steam/lbm air\"%(w)\n", "print \"part d\"\n", "print \"In method 1, Degree of saturation = %.3f\"%(mu)\n", "print \"\\n In method 2, Degree of saturation = %.3f\"%(mu2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:14.2 Pg:659" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "change in moisture content = 0.008857 lbm water/lbm dry air\n", "\n", " in grains, change = 62.00 grains water/lbm dry air\n", "The answers are a bit different due to rounding off error in textbook\n" ] } ], "source": [ "#Initialization of variables\n", "p=14.696 #psia\n", "ps=0.0808 #psia\n", "ps2=0.5069 #psia\n", "phi2=0.5\n", "phi=0.6\n", "grain=7000\n", "#calculations\n", "pw=phi*ps\n", "w1=0.622*pw/(p-pw)\n", "pw2=phi2*ps2\n", "w2=0.622*pw2/(p-pw2)\n", "dw=w2-w1\n", "dwg=dw*grain\n", "#results\n", "print \"change in moisture content = %.6f lbm water/lbm dry air\"%(dw)\n", "print \"\\n in grains, change = %.2f grains water/lbm dry air\"%(dwg)\n", "print \"The answers are a bit different due to rounding off error in textbook\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:14.3 Pg:660" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "From steam tables,\n", "\n", " humidity ratio = 0.0064 lbm/lbm dry air\n", "\n", " relative humidity = 29.7 percent\n", "\n", " Dew point = 46 F\n" ] } ], "source": [ "#Initialization of variables\n", "t1=80 #F\n", "t2=60 #F\n", "p=14.696 #psia\n", "ps=0.507 #psia\n", "pss=0.256 #psia\n", "cp=0.24\n", "print \"From steam tables,\"\n", "#calculations\n", "ws=0.622*pss/(p-pss)\n", "w=(cp*(t2-t1) + ws*1060)/(1060+ 0.45*(t1-t2))\n", "pw=w*p/(0.622+w)\n", "phi=pw/ps\n", "td=46 #F\n", "#results\n", "print \"\\n humidity ratio = %.4f lbm/lbm dry air\"%(w)\n", "print \"\\n relative humidity = %.1f percent\"%(phi*100)\n", "print \"\\n Dew point = %d F\"%(td)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:14.4 Pg:661" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "In case 1, enthalpy = 26.32 Btu/lbm dry air\n", "\n", " In case 1, sigma function = 26.14 Btu/lbm dry air\n", "\n", " In case 2, enthalpy = 26.47 Btu/lbm dry air\n", "\n", " In case 2, sigma function = 26.15 Btu/lbm dry air\n" ] } ], "source": [ "#Initialization of variables\n", "W=0.0065 #lbm/lbm of dry air\n", "t=80 #F\n", "td=60 #F\n", "#calculations\n", "H=0.24*t+W*(1060+0.45*t)\n", "sig=H-W*(td-32)\n", "Ws=0.0111\n", "H2=0.24*td+Ws*(1060+0.45*td)\n", "sig2=H2-Ws*(td-32)\n", "#results\n", "print \"In case 1, enthalpy = %.2f Btu/lbm dry air\"%(H)\n", "print \"\\n In case 1, sigma function = %.2f Btu/lbm dry air\"%(sig)\n", "print \"\\n In case 2, enthalpy = %.2f Btu/lbm dry air\"%(H2)\n", "print \"\\n In case 2, sigma function = %.2f Btu/lbm dry air\"%(sig2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:14.5 Pg:662" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "In case 1, Enthalpy = 9.41 Btu/lbm dry air\n", "\n", " In case 2, Enthalpy = 31.15 Btu/lbm dry air\n", "\n", " Heat added = 21.49 Btu/lbm dry air\n" ] } ], "source": [ "#Initialization of variables\n", "t1=30 #F\n", "t2=60 #F\n", "t3=80 #F\n", "W1=0.00206\n", "W2=0.01090\n", "#calculations\n", "cm1=0.24+0.45*W1\n", "H1=cm1*t1+W1*1060\n", "cm2=0.24+0.45*W2\n", "H2=cm2*t3+W2*1060\n", "hf=t2-32\n", "dq=H2-H1-(W2-W1)*hf\n", "#results\n", "print \"In case 1, Enthalpy = %.2f Btu/lbm dry air\"%(H1)\n", "print \"\\n In case 2, Enthalpy = %.2f Btu/lbm dry air\"%(H2)\n", "print \"\\n Heat added = %.2f Btu/lbm dry air\"%(dq)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:14.6 Pg:663" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "using psychrometric charts,\n", "part a\n", "partial pressure of water = 0.15 psia\n", "\n", " dew temperature = 46 F\n", "part b\n", "density of water = 0.000000 lbm/ft**3\n", "\n", " density of air = 0.0728 lbm/ft**3\n", "part c\n", "specific humidity = 0.00657 lbm water/lbm air\n" ] } ], "source": [ "#Initialization of variables\n", "pw=0.15#psia\n", "print \"using psychrometric charts,\"\n", "tdew=46 #F\n", "#calculations\n", "va=13.74 #ft**3/lbm dry air\n", "rhoa=1/va\n", "V=13.74\n", "mw=46/7000\n", "rhow=mw/V\n", "w=0.00657\n", "#results\n", "print \"part a\"\n", "print \"partial pressure of water = %.2f psia\"%(pw)\n", "print \"\\n dew temperature = %d F\"%(tdew)\n", "print \"part b\"\n", "print \"density of water = %.6f lbm/ft**3\"%(rhow)\n", "print \"\\n density of air = %.4f lbm/ft**3\"%(rhoa)\n", "print \"part c\"\n", "print \"specific humidity = %.5f lbm water/lbm air\"%(w)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:14.7 Pg:664" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "From humidity charts,\n", "Enthalpy change = 21.53 Btu/lbm dry air\n" ] } ], "source": [ "#Initialization of variables\n", "W1=0.00206 #lbm/lbm dry air\n", "W2=0.01090 #lbm/lbm dry air\n", "t=60 #F\n", "print \"From humidity charts,\"\n", "#calculations\n", "dw=W1-W2\n", "hs=144.4\n", "hs2=66.8-32\n", "w1=14.4 #Btu/lbm\n", "ws1=20 #Btu/lbm\n", "w2=76.3 #Btu/lbm\n", "ws2=98.5 #Btu/lbm\n", "dwh1=-(w1-ws1)/7000 *hs\n", "H1=9.3+dwh1\n", "dwh2=(w2-ws2)/7000 *hs2\n", "H2=31.3+dwh2\n", "dwc=dw*(t-32)\n", "dq=H2-H1+dwc\n", "#results\n", "print \"Enthalpy change = %.2f Btu/lbm dry air\"%(dq)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:14.8 Pg:665" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "From psychrometric charts at 50 F and 80 F,\n", "The two initial states have been multiplied by 108/262 and distance 2-3 is located\n", "humidity = 0.83 \n", "\n", " Temperature = 62.5 F\n" ] } ], "source": [ "#Initialization of variables\n", "print \"From psychrometric charts at 50 F and 80 F,\"\n", "va1=13 #ft**3/lbm dry air\n", "va2=13.88 #ft**3/lbm dry air\n", "flow=2000 #cfm\n", "#calculations\n", "ma1= flow/va1\n", "ma2=flow/va2\n", "print \"The two initial states have been multiplied by 108/262 and distance 2-3 is located\"\n", "t=62.5# F\n", "phi=0.83 #percent\n", "#results\n", "print \"humidity = %.2f \"%(phi)\n", "print \"\\n Temperature = %.1f F\"%(t)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:14.9 Pg:666" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "from psychrometric charts,\n", "Dry bulb temperature = 71.76 F\n", "\n", " percent humidity = 0.80\n" ] } ], "source": [ "#Initialization of variables\n", "t=90 #F\n", "ts=67.2 #F\n", "phi=0.3\n", "per=0.8\n", "#calculations\n", "dep=t-ts\n", "dt=dep*per\n", "tf=t-dt\n", "print \"from psychrometric charts,\"\n", "phi2=0.8\n", "#results\n", "print \"Dry bulb temperature = %.2f F\"%(tf)\n", "print \"\\n percent humidity = %.2f\"%(phi2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:14.10 Pg:667" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "From psychrometric charts,\n", "cooling range = 25 F\n", "\n", " Approach = 10 F\n", "\n", " amount of water cooled per pound of dry air = 1.216 lbm dry air/lbm dry air\n", "\n", " percentage of water lost by evaporation = 2.12 percent\n" ] } ], "source": [ "#Initialization of variables\n", "m=1 #lbm\n", "t1=100 #F\n", "t2=75 #F\n", "db=65 #F\n", "print \"From psychrometric charts,\"\n", "t11=82 #F\n", "phi1=0.4\n", "H1=30 #Btu/lbm dry air\n", "w1=65 #grains/lbm dry air\n", "w2=250 #grains/lbm dry air\n", "#calculations\n", "cr=t1-t2\n", "appr=t2-db\n", "dmf3=(w2-w1)*0.0001427\n", "hf3=68\n", "hf4=43\n", "H2=62.2\n", "H1=30\n", "mf4= (H1-H2+ dmf3*hf3)/(hf4-hf3)\n", "per=dmf3/(dmf3+mf4)\n", "#results\n", "print \"cooling range = %d F\"%(cr)\n", "print \"\\n Approach = %d F\"%(appr)\n", "print \"\\n amount of water cooled per pound of dry air = %.3f lbm dry air/lbm dry air\"%(mf4)\n", "print \"\\n percentage of water lost by evaporation = %.2f percent\"%(per*100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:14.11 Pg:668" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "flow rate of air = 449820 lbm/hr.It is equal to 99960 cfm\n", "\n", " Total heat transferred = 13494600 Btu/hr\n", "\n", " Enthalpy = 30.0 Btu/lbm dry air\n", "\n", " Using second method, Enthalpy = 30.0 Btu/lbm\n", "\n", " Performance factor = 3.309 \n", "\n", " logrithamic mean enthalpy difference = 2.48 . Estimated low percentage = 25 low\n", "The answers are a bit different due to rounding off error in textbook.\n" ] } ], "source": [ "from math import log\n", "#Initialization of variables\n", "mfr=1\n", "water=900 #gallons\n", "t2=110 #F\n", "t1=80 #F\n", "cp1=1\n", "#calculations\n", "mfa=mfr*water*8.33*60\n", "mfc=mfa/(60*0.075)\n", "qa=mfa*(t2-t1)\n", "dH=qa/(mfc*4.5)\n", "dH2=mfr*cp1*(t2-t1)\n", "H1=23.73\n", "H2=5.08\n", "f=3.309\n", "lnmean=(H1-H2)/log(H1/H2)\n", "dtt=(t2-t1)/lnmean\n", "per=25\n", "#results\n", "print \"flow rate of air = %d lbm/hr.It is equal to %d cfm\"%(mfa,mfc)\n", "print \"\\n Total heat transferred = %d Btu/hr\"%(qa)\n", "print \"\\n Enthalpy = %.1f Btu/lbm dry air\"%(dH)\n", "print \"\\n Using second method, Enthalpy = %.1f Btu/lbm\"%(dH2)\n", "print \"\\n Performance factor = %.3f \"%(f)\n", "print \"\\n logrithamic mean enthalpy difference = %.2f . Estimated low percentage = %d low\"%(dtt,per)\n", "print \"The answers are a bit different due to rounding off error in textbook.\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }