{ "metadata": { "name": "", "signature": "sha256:2622b864e241f67942d9af83d84aabbbf519132ac138f1180d8869df35c708b4" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER 1 : Basic Principles" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1.2 : PG-9 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# initialization of variables\n", "m=10 # mass in Kg\n", "V=5 # velocity in m/s\n", "\n", "KE=m*V**2/2 # kinetic energy in N-m \n", "print \"The Kinetic Energy is \",round(KE),\" N.m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Kinetic Energy is 125.0 N.m\n" ] } ], "prompt_number": 77 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1.3 : PG-10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# initialization of variables\n", "V= 3*5*20; # Volume of air in m^3 from dimensions\n", "m= 350.0; # mass in kg\n", "g= 9.81; # gavitational acceleration in m/s^2\n", "\n", "rho=m/V;# density\n", "print \" The Density is \",round(rho,3),\"kg/m^3 \\n\"\n", "\n", "v= 1/rho # specific volume of air\n", "print \" The specific volume is\", round(v,3),\"m^3/kg \\n\"\n", "\n", "gama= rho*g # specific weight of air\n", "print \" The specific weight is\", round(gama,2),\" N/m^3\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The Density is 1.167 kg/m^3 \n", "\n", " The specific volume is 0.857 m^3/kg \n", "\n", " The specific weight is 11.45 N/m^3\n" ] } ], "prompt_number": 78 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1.4 : PG-13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# initialization of variables\n", "h=0.020 # height of mercury in m\n", "gammawater=9810 # specific weight of water in N/m^3\n", "Patm=0.7846*101.3 # atmospheric pressure in kPa from table B.1\n", "\n", "Pgauge=13.6*gammawater*h/1000 # pressure in Pascal from condition gammaHg=13.6*gammawater\n", "\n", "P=(Pgauge+Patm)# absolute pressure in KPa\n", "#result\n", "print \"The Pressure is\",round(P,2),\" kPa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Pressure is 82.15 kPa\n" ] } ], "prompt_number": 79 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1.5 : PG-13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# initialization of variables\n", "d=10.0/100 # diameter of cylinder in 'm'\n", "P=600 # pressure in KPa\n", "Patm=100 # atmospheric pressure in Kpa\n", "K=4.8*1000 # spring constant in N/m \n", "\n", "deltax=(P-Patm)*(math.pi*1000*d**2)/(4*K) # by balancing forces on piston\n", "#result\n", "print \"The Compression in spring is\",round(deltax,3),\" m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Compression in spring is 0.818 m\n" ] } ], "prompt_number": 80 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1.6 : PG-16" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# initialization of variables\n", "ma=2200 # mass of Automobile 'a' in kg\n", "va=25 #velocity of Automobile 'a' in m/s before collision\n", "va1=13.89 # velocity of Automobile 'a' after collision in m/s\n", "mb=1000 # mass of Automobile 'b' in kg\n", "vb=24.44 #velocity of Automobile 'b' after collision in m/s\n", "\n", "KE1=(ma*va**2)/2 # kinetic energy before collision\n", "KE2=(ma*va1**2)/2+(mb*vb**2)/2 # kinetic energy after collision\n", "U=(KE1-KE2)/1000 # internal energy from conservation of energy principle in kJ\n", "#result\n", "print \"The increase in kinetic energy is of\",round(U,1),\" kJ\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The increase in kinetic energy is of 176.6 kJ\n" ] } ], "prompt_number": 81 } ], "metadata": {} } ] }