{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5: Mass and Energy Analysis of Control Volumes" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-1 ,Page No.224" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "V=10.0;#volumne of bucket in galon\n", "t=50;#time taken to fill the bucket in sec\n", "p=1;#density of water in kg/L\n", "re=0.8/2/100;#radius of nozzle exit in m\n", "\n", "#calculations\n", "Vd=V/t*3.7854;#factor 0f 3.7854 for gal to L\n", "print'volumne flow rate through hose %f L/s'%round(Vd,3);\n", "m=p*Vd;\n", "print'mass flow rate through hose %f kg/s'%round(m,3);\n", "Ae=math.pi*re**2;\n", "Ve=Vd/Ae/1000;#factor of 1000 for L to m^3\n", "print'average velocity at the nozzle %f m/s'%round(Ve,1);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "volumne flow rate through hose 0.757000 L/s\n", "mass flow rate through hose 0.757000 kg/s\n", "average velocity at the nozzle 15.100000 m/s\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-2 ,Page No.225" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from scipy.integrate import quad \n", "from pylab import *\n", "\n", "#given data\n", "Dtank=3*12;#diameter of tank in inches\n", "Djet=0.5;#diameter of water jet in inches\n", "h0=2;#bottom reference in ft\n", "h1=4;#height of water tank in ft\n", "\n", "#constants used \n", "g=32.2;#in ft/s^2\n", "\n", "#calculations\n", "#min - mout = dmCV/dt\n", "#mout = p*(2*g*h*Ajet)^2\n", "#mCV = p*Atank*h\n", "#from these we get dt = Dtank^2/Djet^2 * (dh/(2*g*h)^2)\n", "def intgrnd1(h): \n", " return (Dtank**2/Djet**2*(1/sqrt(2*g*h)))\n", "t, err = quad(intgrnd1, h0, h1) \n", "t=(t/60);#in min\n", "print'time taken to drop to 2 ft %f min'%round(t,1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "time taken to drop to 2 ft 12.600000 min\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-3 ,Page No.229" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "P=150;#operating pressure in kPa\n", "Vliquid=0.6/1000.0;#amount of liquid in the cooker in m^3\n", "t=40.0*60;#period of operation in sec\n", "Ac=8*10**-6;#exit area of opening in m^2\n", "\n", "#from Table A-5\n", "#from P = 150 kPa\n", "h=2693.1;\n", "ug=2519.2;\n", "vf=0.001053;\n", "vg=1.1594;\n", "\n", "#calculations\n", "m=Vliquid/vf;\n", "md=m/t;\n", "print'mass flow rate %f kg/s'%md;\n", "V=md*vg/(Ac);\n", "print'exit velocity %f m/s'%round(V,1);\n", "Eflow=h-ug;\n", "Et=h;\n", "print'flow energy %f kJ/kg'%round(Eflow,1);\n", "print'total energy %f kJ/kg'%round(Et,1);\n", "Emass=md*Et;\n", "print'rate at which energy leaves the cooker %f kW'%round(Emass,3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mass flow rate 0.000237 kg/s\n", "exit velocity 34.400000 m/s\n", "flow energy 173.900000 kJ/kg\n", "total energy 2693.100000 kJ/kg\n", "rate at which energy leaves the cooker 0.639000 kW\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-4 ,Page No.234" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "T1=283;#temperature of air in K\n", "P1=80;#entering pressure in kPa\n", "V1=200;#velocity ar inlet in m/s\n", "A1=0.4;#inlet area in m^2\n", "\n", "#constants used\n", "R=0.287;#in kPa-m^3/kg-K\n", "\n", "#calulations\n", "v1=R*T1/P1;\n", "m=V1*A1/v1;\n", "print'mass flow rate of air %f kg/s'%round(m,1);\n", "# Ein - Eout = dEsystem / dt\n", "#from Table A-17\n", "h1=283.14;\n", "V2=0;\n", "h2=h1-(V2^2 - V1^2)/2/1000;#factor of 1000 to convert to kJ/kg\n", "#from Table A-17 at this value of h2\n", "T2=303;\n", "print'the temperature %i K is'%T2;\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mass flow rate of air 78.800000 kg/s\n", "the temperature 303 K is\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-5 ,Page No.235" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "P1=250;#inlet pressure in psia\n", "T1=700;#inlet temp in F\n", "A1=0.2;#inlet area in ft^2\n", "qout=1.2;#heat losses in Btu/lbm\n", "m=10;#mass flow rate in lbm/sec\n", "P2=200;#nozzle pressure in kPa\n", "V2=900;#nozzle velocity in m/s\n", "\n", "#from Table A-6E\n", "v1=2.6883;\n", "h1=1371.4;\n", "\n", "#calculations\n", "V1=m*v1/A1;\n", "print'the inlet velocit %f f/s'%round(V1,1);\n", "# Ein - Eout = dEsystem / dt\n", "h2=h1-qout-(V2**2 - V1**2)/2/25037;#factor of 25037 to convert to Btu/lbm\n", "#at this value h2, from Tablw A-6E\n", "T2=662;\n", "print'exit temperature %i F'%T2\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the inlet velocit 134.400000 f/s\n", "exit temperature 662 F\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-6 ,Page No.236" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "T1=280;#intial pressure in kPa\n", "P1=100;#intial temp in K\n", "m=0.02;#mass flow rate in kg/s\n", "qout=16;#heat losses in kJ/kg\n", "P2=600;#final pressure in kPa\n", "T2=400;#final temp in K\n", "\n", "#from Table A-17\n", "h1=280.13;\n", "h2=400.98;\n", "\n", "#calculations\n", "# Ein - Eout = dEsystem / dt\n", "Win=m*qout+m*(h2-h1);\n", "print'the input power of compressor %f kW'%round(Win,2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the input power of compressor 2.740000 kW\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-7 ,Page No.237" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "P1=2;#inlet pressure in MPa\n", "T1=400;#inlet temp in K\n", "V1=50.0;#inlet velocity in m/s\n", "z1=10;#inlet height in m\n", "P2=15;#final pressure in MPa\n", "x2=0.9;#final dryness fraction\n", "V2=180.0;#final velocity in m/s\n", "z2=6;#final height in m\n", "Wout=5*1000;#power output in kW\n", "\n", "#from Table A-6\n", "h1=3248.4;\n", "#similarly for P2\n", "hf=225.94;\n", "hfg=2372.3;\n", "\n", "#constants used \n", "g=9.8;#in m/s^2\n", "\n", "#calcualtions\n", "h2=hf+x2*hfg;\n", "print'difference in enthalpies %f kJ/kg'%round((h2-h1),2);\n", "print'difference in kinetic energy %f kJ/kg'%round((V2**2-V1**2)/2/1000,2);#factor of 1000 to convert to kJ/kg\n", "print'difference in potential energy %f kJ/kg'%round(g*(z2-z1)/1000,2);#factor of 1000 to convert to kJ/kg\n", "wout=-((h2-h1)+(V2**2-V1**2)/2/1000+g*(z2-z1)/1000);#factor of 1000 to convert to kJ/kg\n", "print'work done per unit of mass %f kJ/kg'%round(wout,2);\n", "m=Wout/wout;\n", "print'mass flow rate %f kg/s'%round(m,2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "difference in enthalpies -887.390000 kJ/kg\n", "difference in kinetic energy 14.950000 kJ/kg\n", "difference in potential energy -0.040000 kJ/kg\n", "work done per unit of mass 872.480000 kJ/kg\n", "mass flow rate 5.730000 kg/s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-8 ,Page No.239" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "P1=0.8;#entering pressure in MPa\n", "P2=0.12;#throttled pressure in MPa\n", "\n", "#from Table A-12\n", "#sat. liq at P1\n", "T1=31.31;\n", "h1=95.47;\n", "#since process is insentropic and at P2\n", "h2=h1;\n", "hf=22.49;\n", "hg=236.97;\n", "T2=-22.32;\n", "\n", "#calculations\n", "x2=(h2-hf)/(hg-hf);\n", "print'the final state is %f'%round(x2,3);\n", "dT=T2-T1;\n", "print'temperature drop %f C'%round(dT,2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the final state is 0.340000\n", "temperature drop -53.630000 C\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-9 ,Page No.241" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "T1=140;#inlet temp of hot water in F\n", "T2=50;#inlet temp of cold water in F\n", "T3=110;#steady state output temp in F\n", "P=20;#operating pressure in psia\n", "\n", "#for a compressed liq at given temp\n", "h1=107.99;\n", "h2=18.07;\n", "h3=78.02;\n", "\n", "#calculations\n", "#Mass balance min = mout So, m1+m2 = m3\n", "#Energy balance Ein = Eout So, m1*h1 + m2*h2 = m3*h3\n", "#combining realations\n", "#m1*h1 + m2*h2 = (m1+m2)*h3\n", "#dividing by m2 and y=m1/m2\n", "#we get, yh1 + h2 = (y+1)*h3\n", "y=(h3-h2)/(h1-h3);\n", "print'the ratio of mass flow rates %f'%round(y,1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the ratio of mass flow rates 2.000000\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-10 ,Page No.242" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "T1=15;#water inlet temp in C\n", "P1=300;#water inlet pressure in kPa\n", "T2=25;#water outlet temp in C\n", "T3=70;#R-134a inlet temp in C\n", "P3=1000;#R-134a inlet pressure in kPa\n", "T4=35;#R-134a outlet temp in C\n", "mr=6;#mass flow rate in kg/min\n", "\n", "#from Table A-4, A-13 and A-11\n", "h1=62.982;\n", "h2=104.83;\n", "h3=303.85;\n", "h4=100.87;\n", "\n", "#calculations\n", "#mass balance m1=m2=mw and m3=m4=mr\n", "#energy balance m1*h1 + m3*h3 = m2*h2 + m4*h4\n", "#combining them mw*(h1-h2) = mr*(h4-h3)\n", "mw= mr*(h4-h3)/(h1-h2);\n", "print'mass flow rate of cooling water %f kg/min'%round(mw,1);\n", "Qin=mw*(h2-h1);\n", "print'heat transfer rate %i kJ/min'%round(Qin)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mass flow rate of cooling water 29.100000 kg/min\n", "heat transfer rate 1218 kJ/min\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-11 ,Page No.245" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "T1=17+273;#inlet temp in K\n", "P1=100;#inlet pressure in kPa\n", "V1=150;#inlet volumetric rate in m^3/min\n", "Win=15;#rated power in kW\n", "Qout=200/1000;#heat lost in kJ/s\n", "\n", "#constants used\n", "R=0.287;#in kPa-m^3/kg-K\n", "cp=1.005;#in kJ/kg C\n", "\n", "#calculations\n", "v1=R*T1/P1;\n", "m=V1/v1/60;#factor of 6 to convert to s\n", "# Win - Qout = m*cp*(T2-T1)\n", "T2= T1 + (Win - Qout)/(m*cp);\n", "print'exit temperature %f C'%round((T2-273),2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "exit temperature 21.970000 C\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-13 ,Page No.250" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "V=6.0/1000;#volumne of cooker in m^3\n", "Pgage=75;#operating pressure in kPa\n", "Patm=100;#atmospheric pressure in kPa\n", "m1=1;#mass of water in kg\n", "Qind=0.5;#heat supplying rate in kJ/sec ; d stands for .\n", "t=30*60;#operating time in s\n", "\n", "#calculation\n", "Pabs=Pgage+Patm;\n", "#from Table A-5, ths saturation temp \n", "T=116.04;\n", "print'the temperature at which cooking takes place %f C'%T;\n", "#mass balance me=(m1-m2)cv\n", "#energy balance Qin - mehe = (m2u2 - m1u1)cv\n", "Qin=Qind*t;\n", "#from Table A-5\n", "he=2700.2;\n", "vf=0.001;\n", "vg=1.004;\n", "uf=486.82;\n", "ufg=2037.7;\n", "v1=V/m1;\n", "x1=(v1-vf)/(vg-vf);\n", "u1=uf+x1*ufg;\n", "U=m1*u1;\n", "#Qin = (m1 - V/v2)*he + (V/v2*u2 - m1*u1)\n", "#v2=vf + x2*(vg-vf)\n", "#u2=uf + x2*ufg\n", "#combining these equations we get\n", "#solved using EES\n", "x2=0.009;\n", "v2=vf + x2*(vg-vf);\n", "m2=V/v2;\n", "print'amount of water left %f kg'%round(m2,1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the temperature at which cooking takes place 116.040000 C\n", "amount of water left 0.600000 kg\n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }