{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2: Energy Conversion and General Energy Analysis" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ " Example 2-1 ,Page No.57" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#there is a 0.00490% error as the answer in textbook is expressed in multiple of 10\n", "#Constants used\n", "Hu=6.73*10**10;#Energy liberated by 1 kg of uranium\n", "\n", "# Given values\n", "p=0.75;# assuming the avg density of gasoline in kg/L\n", "V=5;# consumption per day of gasoline in L\n", "Hv=44000; #heat value in kJ/kg\n", "mu=0.1;# mass of uranium used\n", "\n", "#Calculation\n", "mgas=p*V;#mass of gasoline required per day\n", "Egas=mgas*Hv;\n", "Eu=mu*Hu;\n", "d=Eu/Egas;\n", "print'%i number of days the car can run with uranium' %round(d,0)\n", "print'equivalent to %i years' %round(d/365,0)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "40788 number of days the car can run with uranium\n", "equivalent to 112 years\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2-2 ,Page No.59" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given values\n", "v=8.5;# wind speed in m/s\n", "m=10;# given mass for part - b \n", "mf=1154;# given flowrate for part - c\n", "\n", "#Calculations\n", "e=(v**2)/2;\n", "print'wind energy per unit mass %f J/kg' %round(e,1);\n", "E=m*e;\n", "print'wind energy for 10 kg mass %i J' %E;\n", "E=mf*e/1000;\n", "print'wind energy for mass flow rate of 1154kg/s %f kW'%round(E,1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wind energy per unit mass 36.100000 J/kg\n", "wind energy for 10 kg mass 361 J\n", "wind energy for mass flow rate of 1154kg/s 41.700000 kW\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2-7 ,Page No.67" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Given values\n", "T=200;# applied torque in N\n", "n=4000;# shaft rotation rate in revolutions per minute\n", "\n", "#Calculation\n", "Wsh=(2*math.pi*n*T)/1000/60;#factor of 1000 to convert to kW and 60 to convert to sec\n", "print'Power transmitted %f kW'%round(Wsh,1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power transmitted 83.800000 kW\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2-8 ,Page No.69" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Constants used\n", "g=9.81;#acceleration due to gravity in m/s^2;\n", "\n", "#Given values\n", "m=1200;#mass of car in kg\n", "V=90/3.6;#velocity ; converting km/h into m/s\n", "d=30*math.pi/180;#angle of slope ; converting into radians\n", "\n", "#Calculation\n", "Vver=V*math.sin(d);#velocity in vertical direction\n", "Wg=m*g*Vver/1000;\n", "print'the addtional power %i kW'%Wg" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the addtional power 147 kW\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2-9 ,Page No.69" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given values\n", "m=900;#mass of car in kg\n", "v1=0;# intial velocity\n", "v2=80/3.6;# final velocity; converting km/h into m/s\n", "t=20;# time taken1\n", "\n", "#Calculation\n", "Wa=m*(v2**2-v1**2)/2/1000;\n", "Wavg=Wa/t;\n", "print'the average power %f kW'%round(Wavg,1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the average power 11.100000 kW\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2-10 ,Page No.74" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given values\n", "Win=100;# work done in the process in kJ\n", "Qout=500;# heat lost in kJ\n", "U1=800;# internal energy of the fluid in kJ\n", "\n", "#Calculations\n", "# Win - Qout = U2- U1 i.e change in internal energy \n", "U2=U1-Qout+Win;\n", "print'final internal of the system %i kJ'%U2\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "final internal of the system 400 kJ\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2-11 ,Page No.75" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given values\n", "Win=20;# power consumption in W\n", "mair=0.25;# rate of air discharge in kg/sec\n", "\n", "#calculation\n", "v=math.sqrt(Win/2/mair)#Win = 1/2*m*v^2\n", "if v >=8:\n", " print('True');\n", "else:\n", " print('False')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "False\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2-12 ,Page No.76" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given values\n", "Win=200.0;#Power of fan in W\n", "U=6.0;#Overall heat transfer coefficient in W/m^2 C\n", "A=30;#Surface area in m^2\n", "To=25;#Outdoor temperature in C\n", "\n", "#Calculations\n", "Ti= (Win/U/A)+To;# Win = Qout = U*A*(Ti - To)\n", "print'the indoor air temperature %f Celcius'%Ti\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the indoor air temperature 26.111111 Celcius\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2-13 ,Page No.76" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given values\n", "Plamp=80.0;#Power of lamp in W\n", "N=30;#no of lamps\n", "t=12;#time period the light is in use in hours/day\n", "y=250;#days in a year light is in function \n", "UC=0.07;#unit cost in $\n", "\n", "#Calculation\n", "LP=Plamp*N/1000;#Lighting power in kW\n", "OpHrs=t*y;#Operating hours\n", "LE=LP*OpHrs;#Lighting energy in kW\n", "LC=LE*UC;#Lighting cost\n", "print'the annual energy cost $%i'%LC\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the annual energy cost $504\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2-15 ,Page No.82" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given values\n", "Ein=2.0;#Power of electric burner in kW\n", "n1=0.73;#Efficiency of open burners\n", "n2=0.38;#efficency of gas units\n", "CinH=0.09;#Unit cost of electricity in $\n", "CinB=0.55;#Unit cost of natural gas in $\n", "\n", "#Calculations\n", "QutH= Ein * n1;\n", "print'rate of energy consumption by the heater %f kW'%round(QutH,2);\n", "CutH= CinH / n1;\n", "print'the unit cost of utilized energy for heater $%f/kWh'%round(CutH,3);\n", "QutB= QutH / n2 ;\n", "print'rate of energy consumption by the burner %f kW'%round(QutB,2);\n", "CutB= CinB / n2 / 29.3; # 1 therm = 29.3 kWh\n", "print'the unit cost of utilized energy for burner %f kWh'%round(CutB,3);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rate of energy consumption by the heater 1.460000 kW\n", "the unit cost of utilized energy for heater $0.123000/kWh\n", "rate of energy consumption by the burner 3.840000 kW\n", "the unit cost of utilized energy for burner 0.049000 kWh\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2-16 ,Page No.84" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#there is a 0.204% error in the last part of the question due to rounding off the intermidiate steps in the solution\n", "\n", "#Constants used\n", "g=9.81;#acceleration due to gravity in m/s^2;\n", "\n", "#Given values\n", "h=50.0;#Depth of water in m\n", "m=5000.0;#mass flow rate of water in kg/sec\n", "Wout=1862.0;#generated electric power in kW\n", "ngen=0.95;#efficiency of turbine\n", "\n", "#calculation\n", "X=g*h/1000.0;# X stands for the differnce b/w change in mechanical energy per unit mass\n", "R=m*X;#rate at which mech. energy is supplied to turbine in kW\n", "nov=Wout/R;#overall efficiency i.e turbine and generator\n", "print'overall efficiency is %f'%round(nov,2);\n", "ntu=nov/ngen;#efficiency of turbine\n", "print'efficiency of turbine is %f'%round(ntu,2);\n", "Wsh=ntu*R;#shaft output work\n", "print'shaft power output %i kW'%round(Wsh,0)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "overall efficiency is 0.760000\n", "efficiency of turbine is 0.800000\n", "shaft power output 1960 kW\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2-17 ,Page No.85" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given values\n", "Pstd=4520.0;\n", "Phem=5160.0;#prices of std and high eff motor in USD\n", "R=60*0.7457;#rated power in kW from hp\n", "OpHrs=3500.0;#Operating hours\n", "Lf=1.0;#Load Factor\n", "nsh=0.89;#efficiency of shaft\n", "nhem=0.932;#efficiency of high eff. motor\n", "CU=0.08;#per unit cost in $\n", "\n", "#calculation\n", "PS=R*Lf*(1/nsh-1/nhem);#Power savings = W electric in,standard - W electric in,efficient\n", "ES=PS*OpHrs;#Energy savings = Power savings * Operating hours\n", "print'Energy savings %i kWh/year'%ES;\n", "CS=ES*CU;\n", "print'Cost savings per year $%i'%CS;\n", "EIC=Phem-Pstd;#excess intial cost\n", "Y=EIC/CS;\n", "print'simple payback period %f years'%round(Y,1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy savings 7929 kWh/year\n", "Cost savings per year $634\n", "simple payback period 1.000000 years\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2-18 ,Page No.91" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given values\n", "#NOx details\n", "m1=0.0047;#emissions of gas furnaces of NOx in kg/therm\n", "N1=18*10**6;#no. of therms per year \n", "#CO2 details\n", "m2=6.4;#emissions of gas furnaces of CO2 in kg/therm\n", "N2=18*10**6;#no. of therms per year \n", "\n", "#Calculation\n", "NOxSav=m1*N1;\n", "print'NOx savings %f kg/year'%round(NOxSav,1);\n", "CO2Sav=m2*N2;\n", "print'CO2 savings %f kg/year'%round(CO2Sav,1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "NOx savings 84600.000000 kg/year\n", "CO2 savings 115200000.000000 kg/year\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2-19 ,Page No.95" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Constants used\n", "e=0.95;#Emissivity\n", "tc=5.67*10**-8;#thermal conductivity in W/m^2 K^4\n", "\n", "#Given values\n", "h=6;#convection heat transfer coefficient in W/m^2 C\n", "A=1.6;#cross-sectional area in m^2\n", "Ts=29;#average surface temperature in C\n", "Tf=20;#room temperature in C\n", "\n", "#Calculation\n", "#convection rate\n", "Q1=h*A*(Ts-Tf);\n", "#radiation rate\n", "Q2=e*tc*A*((Ts+273)**4-(Tf+273)**4);\n", "Qt=Q1+Q2;\n", "print'the total rate of heat transfer %f W'%round(Qt,1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the total rate of heat transfer 168.100000 W\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }