{ "metadata": { "name": "", "signature": "sha256:452c6dcc441bc91e8f34d763554249fd3e1009077055510d7afc6705627abbf4" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter12-ideal gas mixtures and humid air" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example1-pg 338" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate molecular weight of air\n", "##initialisation of variables\n", "x= 0.78\n", "x1= 0.21\n", "x2= 0.008\n", "x3= 0.002\n", "MN2= 28.013 ##gms\n", "MO2= 32. ##gms\n", "MAr= 39.948 ##gms\n", "MH2O= 18.016 ##gms\n", "##CALCULATIONS\n", "M= x*MN2+x1*MO2+x2*MAr+x3*MH2O\n", "##RESULTS\n", "print'%s %.3f %s'% ('molecular wight of air=',M,'kg/kmol')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "molecular wight of air= 28.926 kg/kmol\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example2-pg341" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate average value and mass\n", "##initialisation of variables\n", "M= 30.04 ##kg/kmol\n", "R= 8.3143 ##J/mol K\n", "p= 100. ##kPa\n", "V= 0.2 ##m^3\n", "T= 25. ##C\n", "##CALCULATIONS\n", "R1= R/M\n", "m= p*V/(R1*(273.15+T))\n", "##RESULTS\n", "print'%s %.4f %s'% ('average value of R=',R1,'kJ/kg K')\n", "print'%s %.3f %s'% ('mass=',m,'kg')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "average value of R= 0.2768 kJ/kg K\n", "mass= 0.242 kg\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example3-pg343" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate final temperature and final pressure and change in entropy\n", "##initialisation of variables\n", "m1= 0.5 ##kg\n", "cv1= 0.6496 ##kJ/kg K\n", "T1= 80. ##C\n", "m2= 1. ##kg\n", "cv2= 0.6299 ##kJ/kg K\n", "T2= 150. ##C\n", "M= 32. ##kg\n", "M1= 44. ##kg\n", "V1= 0.11437 ##m^3\n", "V2= 0.1 ##m^2\n", "R= 8.314 ##J/mol K\n", "##CALCULATIONS\n", "T= (m1*cv1*(273.15+T1)+m2*cv2*(273.15+T2))/(m1*cv1+m2*cv2)\n", "p= ((m1/M)+(m2/M1))*R*T/(V1+V2)\n", "S= m1*(cv1*math.log(T/(273.15+T1))+(R/M)*math.log((V1+V2)/V1))+m2*(cv2*math.log(T/(273.15+T2))+(R/M1)*math.log((V1+V2)/V2))\n", "##RESULTS\n", "print'%s %.1f %s'% ('final temperature=',T,'kPa')\n", "print'%s %.1f %s'% ('final pressure=',p,'kPa')\n", "print'%s %.4f %s'% ('change in entropy=',S,'kJ/K')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "final temperature= 399.3 kPa\n", "final pressure= 594.0 kPa\n", "change in entropy= 0.2291 kJ/K\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example4-pg354\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate wet-bulb temoerature and minimum temperature and amount of water injected\n", "##initialisation of variables\n", "Twb= 22. ##C\n", "Tmin= 22.3 ##C\n", "w2= 0.0170 ##kg/kg dry air\n", "w1= 0.0093 ##kg/kg dry air\n", "##CALCULATIONS\n", "m= w2-w1\n", "##RESULTS\n", "print'%s %.f %s'% (' wet-bulb temperature=',Twb,'C')\n", "print'%s %.f %s'% ('minimum temperature=',Tmin,'1C')\n", "print'%s %.4f %s'% ('amount of water injected=',m,'kg/kg dry air')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " wet-bulb temperature= 22 C\n", "minimum temperature= 22 1C\n", "amount of water injected= 0.0077 kg/kg dry air\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example5-pg356" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate state after mixing\n", "##initialisation of variables\n", "w3= 0.0178 ##kg/kgair\n", "w4= 0.0172 ##kg/kgair\n", "##CALCULATIONS\n", "dw= w3-w4\n", "##RESULTS\n", "print'%s %.4f %s'% (' state after mixing=',dw,'kg/kgair')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " state after mixing= 0.0006 kg/kgair\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example6-pg357" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate air mass flow rate and amount of water to be added\n", "##initialisation of variables\n", "m= 20000. ##kg/h\n", "T1= 42. ##C\n", "T2= 22. ##C\n", "J= 4.186 ##cal\n", "h1= 54. ##kJ/kg\n", "h2= 94.8 ##kJ/kg\n", "w1= 0.0105 ##kg/h kg\n", "w2= 0.0244 ##kg/h kg\n", "##CALCULATIONS\n", "ma= m*(T1-T2)*J/((h2-h1-J*T2*(w2-w1)))\n", "mw= ma*(w2-w1)\n", "m4= m-mw\n", "##RESULTS\n", "print'%s %.1f %s'%('air mass flow rate=',ma,'kg/hr')\n", "print'%s %.f %s'%('amount of water to be added=',m4,'kg/hr')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "air mass flow rate= 42368.5 kg/hr\n", "amount of water to be added= 19411 kg/hr\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example7-pg359" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate maximum useful work\n", "##initialisation of variables\n", "x= 0.79\n", "P0= 101 ##kPa\n", "P= 20 ##Mpa\n", "V= 0.032 ##m^3\n", "##CALCULATIONS\n", "p= x*P0\n", "Wrev= P*10*10*10*V*(math.log(P/(p*math.pow(10,-3)))+((p*math.pow(10,-3))/P)-1)\n", "##RESULTS\n", "print'%s %.1f %s'% (' maximum useful work=',Wrev,'kJ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " maximum useful work= 2898.0 kJ\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }