{ "metadata": { "name": "", "signature": "sha256:3fa6f805a04c97f9f570ec814cf5d2c019b63eaef8d353695d41af7a87e5f109" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter6 -Control volume" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example1-pg 110" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate diameter for given variable\n", "##initialisation of variables\n", "R= 8.314 ##J/mol K\n", "M= 29 ##gms\n", "T= 80 ##C\n", "p= 104 ##/kPa\n", "v= 30 ##m/sec\n", "m= 8000 ##kg/h\n", "##CALCULATIONS\n", "V= R*(273.15+T)/(M*p)\n", "A= m*V/(3600*v)\n", "D=math.sqrt(4*A/math.pi)\n", "##RESULTS\n", "print'%s %.5f %s'%('diameter = ',D,'m^2')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "diameter = 0.30301 m^2\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example2-pg 114" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate intial areas\n", "##initialisation of variables\n", "R= 8.314 ##J/mol K\n", "M= 29. ##gms\n", "T1= 230. ##C\n", "p1= 30. ##/bar\n", "k= 1.4\n", "T2= 180. ##C\n", "v1= 10. ##m/s\n", "p2= 20. ##bar\n", "m2= 0.84 ##kg/s\n", "##CALCULATIONS\n", "V1= R*(273.15+T1)/(M*p1*100)\n", "cp= k*R/((k-1)*M)\n", "A= m2*V1*10*10*10*10/v1\n", "v2= math.sqrt(v1*v1+2*cp*10*10*10*(T1-T2))\n", "V2= R*(273.15+T2)/(M*p2*100)\n", "A2= m2*V2*10*10*10*10/v2\n", "##RESULTS\n", "print'%s %.1f %s'%('inlet area =',A,'cm^2')\n", "print'%s %.2f %s'%('inlet area =',A2,'cm^2')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "inlet area = 40.4 cm^2\n", "inlet area = 1.72 cm^2\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example3-pg 116" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate quantity x and specific volume\n", "##initialisation of variables\n", "h= 2676.2 ##kJ/kg\n", "hf= 721.11 ##kJ/kg\n", "hg= 2679.1 ##kJ/kg\n", "vf= 0.001115 ##m^3/kg\n", "vg= 0.2404 ##m^3/kg\n", "##CALCULATIONS\n", "x= (h-hf)/(hg-hf)\n", "v1= vf+x*(vg-vf)\n", "##RESULTS\n", "print'%s %.3f %s'%('quantity =',x,'')\n", "print'%s %.2f %s'%('specific volume = ',v1,'m^3/kg')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "quantity = 0.999 \n", "specific volume = 0.24 m^3/kg\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example4-pg 119" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate heat pump and reate heat interaction and work of the turbine and at another point rate of heat interaction and all four areas at given poin\n", "##initialisation of variables\n", "h4= 419.05 ##kJ/kg\n", "h1= 434.92 ##kJ/kg\n", "m= 2.5 ##kg/s\n", "h2= 3272.4 ##kJ/kg\n", "h3= 2601.7 ##kJ/kg\n", "v1= 0.001401 ##m^3/kg\n", "V1= 5. ##m/s\n", "v2= 0.03817 ##m^3/kg\n", "V2= 20. ##m/s\n", "v3= 0.8415 ##m^3/kg\n", "V3= 100. ##m/s\n", "v4= 0.00104 ##m^3/kg\n", "V4= 5. ##m/s\n", "##CALCULATIONS\n", "W41= m*(h4-h1)\n", "Q12= m*(h2-h1)\n", "W23= m*(h2-h3)\n", "Q34= m*(h4-h3)\n", "A1= m*v1*10.*10.*10.*10./V1\n", "A2= m*v2*10.*10*10.*10./V2\n", "A3= m*v3*10.*10*10.*10/V3\n", "A4= m*v4*10.*10*10.*10/V4\n", "##RESULTS\n", "print'%s %.1f %s'%('rate of pump =',W41,'kW')\n", "print'%s %.f %s'%('rate of heat ineraction =',Q12,'kW')\n", "print'%s %.1f %s'%('rate of work of the turbine =',W23,'W')\n", "print'%s %.f %s'%('rate of heat ineraction =',Q34,'kW')\n", "print'%s %.2f %s'%('area =',A1,'cm^2')\n", "print'%s %.2f %s'%('area =',A2,'cm^2')\n", "print'%s %.2f %s'%('area =',A3,'cm^2')\n", "print'%s %.2f %s'%('area =',A4,'cm^2')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rate of pump = -39.7 kW\n", "rate of heat ineraction = 7094 kW\n", "rate of work of the turbine = 1676.8 W\n", "rate of heat ineraction = -5457 kW\n", "area = 7.00 cm^2\n", "area = 47.71 cm^2\n", "area = 210.38 cm^2\n", "area = 5.20 cm^2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example5-pg 123" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate mass of helium and temperature of helium\n", "##initialisation of variables\n", "m1= 0.03 ##kg\n", "R= 8.314 ##J/mol K\n", "T1= 300. ##C\n", "p1= 120. ##kPa\n", "k= 5./3.\n", "M=4. ##kg\n", "p2= 600. ##kPa\n", "##CALCULATIONS\n", "V= m1*R*(273.15+T1)/(p1*M)\n", "m2= m1*((p2/p1)+k-1)/k\n", "T2= p2*V*M/(m2*R)\n", "##RESULTS\n", "print'%s %.3f %s'%('mass of helium =',m2,'kg')\n", "print'%s %.1f %s'%('temperature of helium =',T2,'K')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mass of helium = 0.102 kg\n", "temperature of helium = 842.9 K\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eaxmple 6-pg123" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate volume of container and pressure\n", "##initialisation of variables\n", "m1= 0.03 ##kg\n", "v1= 2.1977 ##m^3/kg\n", "h2= 3073.8 ##kJ/kg\n", "h1= 3061.6 ##kJ/kg\n", "p2= 600. ##kPa\n", "p1= 120. ##kPa\n", "##CALCULATIONS\n", "V=m1*v1\n", "r= ((h2-h1)/v1)+p2-p1\n", "##RESULTS\n", "print'%s %.5f %s'%('volume of container =',V,'m^3')\n", "print'%s %.2f %s'%('pressure =',r,'kPa')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "volume of container = 0.06593 m^3\n", "pressure = 485.55 kPa\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }