{ "metadata": { "name": "", "signature": "sha256:62da0bbd390eac5357f5f997103c8800ba34f828bad9afe3f011ec1444ac1334" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter19-Chemical reactions" ] }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Example1-pg 404" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#caluclate fuel ratio and excess air and emass air-fuel ratio\n", "##initialisation of variables\n", "pN2= 79. ##percent\n", "VN2= 82.3 ##m^3\n", "VCO2= 8. ##m^3\n", "VCO= 0.9 ##m^3\n", "M= 32. ##gms\n", "M1= 28. ##gms\n", "##CALCULATIONS\n", "P= (pN2/(100-pN2))\n", "z= VN2/P\n", "x= VCO2+VCO\n", "w= VCO2+(VCO/2)+(VCO2/10)\n", "y= 2*w\n", "r= y/x\n", "TO= x+(y/4)\n", "X= (z/TO)-1\n", "AF= z*(M+P*M1)/(12*x+y)\n", "##RESULTS\n", "print'%s %.3f %s'%('fuel ratio=',r,'')\n", "print'%s %.3f %s'%('excess air=',X,'')\n", "print'%s %.2f %s'%('emass air-fuel ratio=',AF,'')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "fuel ratio= 2.079 \n", "excess air= 0.618 \n", "emass air-fuel ratio= 23.98 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example2-pg 410" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate heat interaction\n", "##initialisation of variables\n", "m1= 24. ##kg\n", "M1= 32. ##kg\n", "m2= 28. ##kg\n", "M2= 28. ##kg\n", "e= 0.5\n", "T3= 1800. ##C\n", "T0= 25. ##C\n", "T1= 25. ##C\n", "T2= 100. ##C\n", "R= 8.314 ##Jmol K\n", "cp= 4.57 ##J/mol K\n", "cp1= 3.5 ##J/mol K\n", "cp2= 3.5 ##J/mol K\n", "hCO2= -393522. ##J\n", "hCO= -110529. ##J\n", "##CALCULATIONS\n", "n1= m1/M1\n", "n2= m2/M2\n", "N= n1-0.5*e\n", "N1= n2-e\n", "N2= e\n", "N3= N+N1+N2\n", "y1= N/N3\n", "Q= ((N*cp+N1*cp1+N2*cp2)*R*(T3-T0)-(n1*cp*(T1-T0)+n2*cp2*(T2-T1))+N*(hCO2-hCO))/60.\n", "##RESULTS\n", "print'%s %.f %s'%(' Heat interaction=',Q,'kW ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Heat interaction= -940 kW \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example3-pg 412" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate adiabatic flame temperature\n", "##initialisation of variables\n", "T0= 25. ##C\n", "T1= 220. ##C\n", "hCO2= -393520 ##kJ/kg\n", "hH2O= -241830 ##kJ/kg\n", "hC3H8= -103850 ##kJ/kg= 1.4\n", "R= 8.314 ##Jmol K\n", "k= 1.4\n", "k1= 1.29\n", "##CALCULATIONS\n", "T= T0+((15*(R*(k/(k-1)))*4.762*(T1-T0)-(3*hCO2+4*hH2O-hC3H8))/(R*((3+4)*(k1/(k1-1))+(10+56.43)*(k/(k-1)))))\n", "##RESULTS\n", "print'%s %.1f %s'%('adiabatic flame temperature=',T,'C ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "adiabatic flame temperature= 1142.4 C \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example5-pg 415" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate enthalpy formation\n", "##initialisation of variables\n", "T= 25. ##C\n", "hfT= -241820 ##kJ/kmol\n", "R= 8.314 ##J/mol K\n", "k= 1.4\n", "cpH2O= 4.45\n", "cpO2= 3.5\n", "T1= 1000. ##C\n", "##CALCULATIONS\n", "S= (cpH2O-k*cpO2)\n", "hfT1= hfT+S*(T1-T)\n", "##RESULTS\n", "print'%s %.f %s'%('enthalpy formation=',hfT1,'kJ/kmol ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "enthalpy formation= -242259 kJ/kmol \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example6-pg 418" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate equlibrium constant at K and KT1\n", "##initialisation of variables\n", "R= 8.314 ##J/mol K\n", "T= 25. ##C\n", "gf= 16590. ##kJ/kmol\n", "T1= 500. ##C\n", "Cp= 4.157 ##J/mol K\n", "hf= -46190 ##kJ/kmol\n", "e=0.5\n", "##CALCULATIONS\n", "K=math.pow(math.e,gf/(R*(273.15+T)))\n", "r= (1-((273.15+T)/(273.15+T1)))*((hf/(R*(273.15+T)))+(R/Cp))-2*math.log((273.15+T1)/(273.15+T))+0.6\n", "KT1= K*math.pow(math.e,r)\n", "##RESULTS\n", "print'%s %.1f %s'%('equilibrium constant=',K,'bar^-1 ')\n", "print'%s %.5f %s'%('equilibrium constant=',KT1,'bar^-1 ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "equilibrium constant= 806.5 bar^-1 \n", "equilibrium constant= 0.00797 bar^-1 \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example7-pg 419" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#what equilibrium constant at T1 and T2\n", "##initialisation of variables\n", "uCO2= -394374 ##J/mol\n", "uCO= -137150 ##J/mol\n", "uO2= 0.\n", "R= 8.314 ##J/mol K\n", "T= 25. ##C\n", "cpCO2= 4.57 ##J/mol K\n", "cpCO= 3.5 ##J/mol K\n", "cpO2= 3.5 ##J/mol K\n", "T1= 1500. ##C\n", "hf= -393522 ##kJ/kmol\n", "gf= -110529 ##kJ/kmol\n", "T2= 2500. ##C\n", "##CALCULATIONS\n", "r= -(uCO2-uCO-0.5*uO2)/(R*(273.15+T))\n", "s= (cpCO2-cpCO-0.5*cpO2)\n", "r1= (1-((273.15+T)/(273.15+T1)))*((hf-gf)/(R*(273.15+T))-s)+s*math.log((273.15+T1)/(273.15+T))\n", "KT1= math.pow(math.e,r+r1)\n", "r2= (1-((273.15+T)/(273.15+T2)))*((hf-gf)/(R*(273.15+T))-s)+s*math.log((273.15+T2)/(273.15+T))\n", "KT2= math.pow(math.e,r+r2)\n", "##RESULTS\n", "print'%s %.f %s'%('equilibrium constant at T1=',KT1,'C ')\n", "print'%s %.3f %s'%('equilibrium constant at T2=',KT2,'C ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "equilibrium constant at T1= 3477 C \n", "equilibrium constant at T2= 2.635 C \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example8-pg422" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#what is maximum work of given variable \n", "##initialisation of variables\n", "Wc= 12. ##kg\n", "hf= -393520 ##kJ/kmol\n", "gf= -394360 ##kJ/kmol\n", "##CALCULATIONS\n", "Wmax= -gf/Wc\n", "##RESULTS\n", "print'%s %.f %s'%('maximum work=',Wmax,'kJ/kg of carbon ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum work= 32863 kJ/kg of carbon \n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example9-pg423" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the outlet temperature and energy of formation and energy out let and energy of the products\n", "##initialisation of variables\n", "T= 25 ##C\n", "R= 8.314 ##Jmol K\n", "k= 1.27\n", "k1= 1.34\n", "hf= -393520 ##kJ/kmol\n", "M= 28 ##gms\n", "gf= -394360 ##kJ/kmol\n", "M= 12 ##gms\n", "##CALCULATIONS\n", "T1= T+(-hf/((R)*((k/(k-1))+(0.2+4.5144)*(k1/(k1-1)))))\n", "Bin= 0\n", "dh= (k1*R/(k1-1))*(T1-T)\n", "dh1= (k1*R/(k1-1))*math.log((273.15+T1)/(273.15+T))\n", "H= dh-(273.15+T)*dh1\n", "h= (k*R/(k-1))*(T1-T)+hf\n", "h1= (k*R/(k-1))*math.log((273.15+T1)/(273.15+T))+((hf-gf)/(273.15+T))\n", "h2= h-(273.15+T)*h1\n", "Bout= (h2+(0.2+4.5144)*H)/M\n", "##RESULTS\n", "print'%s %.2f %s'%('outlet temperature=',T1,'C')\n", "print'%s %.f %s'%('energy of formation=',Bin,'J')\n", "print'%s %.f %s'%('energy at outlet=',H,'kJ/kmol')\n", "print'%s %.f %s'%('energy of the products=',Bout,'k')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "outlet temperature= 2057.82 C\n", "energy of formation= 0 J\n", "energy at outlet= 46519 kJ/kmol\n", "energy of the products= -9961 k\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example10-pg427" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the change in energy and amount of air and gas and netchange in energy and percent change in energy\n", "##initialisation of variables\n", "b= 1475.30 ##kJ/kg\n", "b0= 144.44 ##kJ/kg\n", "h2= 3448.6 ##kJkg\n", "h1= 860.5 ##kJ/kg\n", "k= 1.27 \n", "k1= 1.34\n", "R= 8.314 ##J/mol K\n", "hf= -393520 ##kJ/kmol\n", "hg= 72596 ##kJ/kmol\n", "Mc= 12 ##kg\n", "n= 1.2 ##moles\n", "n1= 3.76 ##moles\n", "M= 32. ##gms\n", "M1= 28. ##gms\n", "M2= 44. ##gms\n", "n2= 0.2 ##moles\n", "n3= 4.512 ##moles\n", "B1= 25592. ##kJ/kmol C\n", "B2= 394360. ##kJ/kmol C\n", "e= 0.008065\n", "##CALCULATIONS\n", "B= b-b0\n", "Q= h2-h1\n", "CpCO2= k*R/(k-1)\n", "CpO2= k1*R/(k1-1)\n", "Qcoal= (hg+hf)/Mc\n", "mcoal= Q/(-Qcoal)\n", "ncoal= mcoal/Mc\n", "r= (n*M+n1*M1)/Mc\n", "r1= (M2+n2*M+n3*M1)/Mc\n", "mair= r*mcoal\n", "mgas= r1*mcoal\n", "Bfuel= (B1-B2)*e\n", "Bnet= Bfuel+B\n", "p= B*100/(-Bfuel)\n", "##RESULTS\n", "print'%s %.2f %s'% ('change in energy=',B,'kJ/kg ')\n", "print'%s %.3f %s'%('amount of air=',mair,'kg/kg ')\n", "print'%s %.3f %s'%('amount of gas=',mgas,'kg/kg ')\n", "print'%s %.3f %s'%('net change in energy=',Bnet,'kg/kg steam ')\n", "print'%s %.2f %s'%('percent energy in original fuel=',p,'percent ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "change in energy= 1330.86 kJ/kg \n", "amount of air= 1.159 kg/kg \n", "amount of gas= 1.425 kg/kg \n", "net change in energy= -1643.254 kg/kg steam \n", "percent energy in original fuel= 44.75 percent \n" ] } ], "prompt_number": 13 } ], "metadata": {} } ] }