{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 6:The Question of Ideality" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.2,Page no:144" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Find molar volume of CO2\n", "\n", "from scipy.optimize import fsolve\n", "\n", "#Variable declaration:\n", "#For CO2:\n", "a=3.61 #atm L**2 mol**-2\n", "b=4.29*10**-2 #L mol**-1\n", "R=0.082 #L atm K**-1 mol**-1\n", "T=500 #K\n", "P=100 #atm\n", "\n", "#CALCULATION\n", "\n", "#(P+a/Vm^2)(Vm-b)=RT\n", "#or Vm^2(P+a/Vm^2)(Vm-b)=RTVm^2\n", "#or P*Vm**3+a*Vm-Pb*Vm**2-a*b=Rt*Vm**2\n", "#or Vm^^3-(b+RT/P)Vm**2+a/P*Vm-(a*b)/P=0\n", "#Let\n", "C1=b+(R*T/P) #L mol**-1 [aSsume]\n", "C2=a/P #L^2 mol^-2 [assume]\n", "C3=C2*b #L^3mol**-3\n", "def f(x):\n", " return(x**3-C1*x**2+C2*x-C3)\n", "x=fsolve(f,0.3)\n", "\n", "#RESULT\n", "\n", "print \"x=\",round(x,3)\n", "Vm=round(x,3)\n", "print\"Therefore,the value of molar volume,Vm=\",Vm,\"L mol^-1\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "x= 0.366\n", "Therefore,the value of molar volume,Vm= 0.366 L mol^-1\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.5,Page no:149" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 6.5\n", "#To find the fugacity and fugacity coefficient\n", "#Variable declaration\n", "b=0.0391 \t\t\t#Van der waals constant[dm3/mol]\n", "R=0.082 \t\t\t#Universal gas constant[dm3*atm/mol]\n", "P2=1000 \t\t\t#pressure [atm]\n", "P1=0 \t\t\t\t#pressure [atm]\n", "T=1273\t\t \t\t#Temperature [K]\n", "import math\n", "#Calculation\n", "\n", "x=b*(P2-P1) \n", "y=R*T \n", "fc=math.exp(x/y) \t\t#fugacity coefficient\n", "\n", "f=P2*fc #fugacity[atm]\n", "#Result\n", "print\"The fugacity coefficient is\",round(fc,3) \n", "print\"The fugacity is\",round(f),\"atm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The fugacity coefficient is 1.454\n", "The fugacity is 1454.0 atm\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.10,Page no:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 6.10\n", "#To find the partial pressure of CO2 gas \n", "#Variable declaration\n", "m1=0.03 #mass of CO2(g)[gm]\n", "w1=44.01 #molecular weight of CO2(g)[gm/mol]\n", "m2=250 #mass of water[gm]\n", "w2=18.02 #molecular weight of water[gm/mol]\n", "k=1.25*10**6 #Henry's law constant[Torr]\n", "T=298 #Temperature[K]\n", "#Calculation\n", "\n", "n1=m1/w1 #no. of moles of CO2\n", "n2=m2/w2 #no. of moles of water\n", "x1=n1/(n1+n2) #mole fraction of CO2\n", "Pco2=k*x1 #Partial pressure of CO2[Torr]\n", "#Result\n", "print\"The partial pressure of CO2 gas is\",round(Pco2,2),\"Torr\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The partial pressure of CO2 gas is 61.41 Torr\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.11,Page no:161" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 6.11\n", "\n", "#To find the Volume of the solution\n", "#Variable declaration\n", "W=1000 \t\t\t#Total mass of a solution[gm]\n", "x1=0.5 \t\t\t#mole fraction of Chloroform\n", "x2=0.5 \t\t\t#mole fraction of Acetone\n", "V1m=80.235 \t\t#Partial molar volume of chloroform[cm3/mol]\n", "V2m=74.166 \t\t#Partial molar volume of Acetone[cm3/mol]\n", "M1=119.59 \t\t#molecular weight of chloroform[gm/mol]\n", "M2=58 \t\t\t#molecular weight of Acetone[gm/mol]\n", "#Calculation\n", "\n", "nT=W/(x1*M1+x2*M2) \t#Total no. of moles\n", "V=nT*(x1*V1m+x2*V2m) \t#Total volume[cm3]\n", "#Result\n", "print\"The volume of the solution is\",round(V,1),\"cm^3 (approx)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The volume of the solution is 869.4 cm^3 (approx)\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.12,Page no:163" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 6.12\n", "#to find the excess volume \n", "#Variable declaration\n", "x1=0.5 #mole fraction of chloroform\n", "x2=0.5 #mole fraction of p-xylene\n", "T=298 #Temperature[K]\n", "#Calculation\n", "\n", "Ve=x1*x2*(0.585+0.085*(x1-x2)-0.165*(x1-x2)**2) #Excess volume measured by using a dilatometer\n", "#Result\n", "print\"Ve/(cm3.mol**-1) = \",round(Ve,3) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ve/(cm3.mol**-1) = 0.146\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.14,Page no:169" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 6.14\n", "\n", "#To find the activity , molality of the electrolytes\n", "#Variable declaration\n", "m1=0.01 \t\t#molality[m]\n", "v11=1.0 \n", "v12=2.0 \n", "Y1=0.71 \n", "m2=0.005 \t\t#molality[m]\n", "v21=1.0 \n", "v22=1.0 \n", "Y2=0.53 \n", "\n", "#Calculation\n", "\n", "v1=(v11)+(v12) \n", "v2=(v21)+(v22) \n", "a1=(m1**v1)*(v11**v11)*(v12**v12)*(Y1**v1) \n", "a2=(m2**v2)*(v21**v21)*(v22**v22)*(Y2**v2) \n", "x=1.0/v1 \n", "a1m=a1**x \n", "m1m=m1*(v11**v11*v12**v12)**x #molality[m]\n", "y=1.0/v2 \n", "m2m=m2*(v21*v21*v22**v22)**y #molality[m]\n", "a2m=a2**y \n", "#Result\n", "print\"The activity of the electrolyte ZnCl2 is\",round(a1,8)\n", "print\"The activity of the electrolyte CuSO4 is\",round(a2,8)\n", "#print\"The mean activity of ZnCl2 is\",a1m\n", "print\"The mean molality of ZnCl2 in [m]\",round(m1m,4)\n", "#print\"The mean activity of CuSO4 is\",a2m \n", "print\"The mean molality of CuSO4 in [m]\",m2m \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The activity of the electrolyte ZnCl2 is 1.43e-06\n", "The activity of the electrolyte CuSO4 is 7.02e-06\n", "The mean molality of ZnCl2 in [m] 0.0159\n", "The mean molality of CuSO4 in [m] 0.005\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.15,Page no:172" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 6.15\n", "\n", "#To find the molecular weight of sucrose\n", "#Variable declaration\n", "m2=3 \t\t\t#mass of the sucrose[gm]\n", "m1=0.1 \t\t\t#mass of water [Kg]\n", "Kf=1.86 \t\t#cryoscopic constant of water[K*Kg/mol]\n", "dTf=0.16 \t\t#Lowering in freezing point[K]\n", "#Calculation\n", "\t\n", "a=m1*dTf \n", "b=Kf*m2 \n", "M2=b/a \t\t\t#molecular weight\n", "#Result\n", "print\"M2=molecular weight , then M2=\",M2 " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "M2=molecular weight , then M2= 348.75\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.16,Page no:173" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 5.16\n", "\n", "#To find the molecular formula of sulphur\n", "#Variable declaration\n", "dTf=0.088 \t\t\t#Lowering in freezing point[K]\n", "m2=0.45 \t\t\t#mass of sulphur[gm]\n", "m1=0.09955 \t\t\t#mass of benzene[gm]\n", "Kf=5.07 \t\t\t#cryoscopic constant for benzene[K*Kg/mol]\n", "#Calculation\n", "\n", "a=m1*dTf \n", "b=Kf*m2 \n", "M2=b/a \t\t\t\t#molecular weight of sulphur\n", "#Result\n", "print\"The molecular weight of sulphur is\",round(M2,1) \n", "x=M2/32 \t\t\t#no. of sulphur atoms\n", "print\"\\n The molecular formula of sulphur is S\",round(x) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The molecular weight of sulphur is 260.4\n", "\n", " The molecular formula of sulphur is S 8.0\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.17,Page no:174" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 6.17\n", "#To find the molar mass of macromolecule\n", "#Variable declaration\n", "m2=1.35 \t\t\t#mass of a macromolecule[gm]\n", "V=100\t \t\t\t#volume of solution[cm^3]\n", "R=82 \t\t\t\t#Universal gas constant[atm.cm^3.K^-1]\n", "T=300 \t\t\t\t#Temperature[K]\n", "II=9.9 \t\t\t\t#osmotic pressure of the solution[cm]\n", "d=1 \t\t\t\t#density\n", "p=1013250 \t\t\t#Atmospheric pressure\n", "g=980.67 \t\t\t#gravitational field\n", "#Calculation\n", "\n", "\n", "a=m2*R*T*p \n", "b=V*9.9*d*g \n", "M2=a/b #molar mass of macromolecule\n", "#Result\n", "print\" M2 = molar mass of macromolecule , therefore M2 = \",round(M2),\"g.mol^-1\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " M2 = molar mass of macromolecule , therefore M2 = 34660.0 g.mol^-1\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.18,Page no:175" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 6.18\n", "\n", "#To find the osmotic pressure of a solution\n", "#Variable declaration\n", "R=82 \t\t\t#Universal gas constant[atm.ml.K^-1.mol^-1]\n", "T=298 \t\t\t#Temperature[K]\n", "V=250 \t\t\t#volume of water[ml]\n", "m2=2.6 \t\t\t#mass of the protein\n", "M2=85000 \t\t#molar mass of protein[g.mol^-1]\n", "\n", "#Calculation\n", "\t\n", "n2=m2/M2 \t\t\t#no. of moles of protein\n", "II=(n2*R*T)/V \t\t\t#Osmotic pressure of a solution[atm]\n", "#Result\n", "print\"The osmotic pressure is\",round(II,5),\"atm \"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The osmotic pressure is 0.00299 atm \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.19,Page no:175" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 6.19\n", "#To find the Ebullioscopic constant of water\n", "#Variable declaration\n", "R=8.314 \t\t\t#Universal gas constant[J.K**-1.mol**-1]\n", "Tb=373.15 \t\t\t#Boiling point temperature[K]\n", "M1=0.018 \t\t\t# mass of water[kg]\n", "Hvap=40.7 \t\t\t#Enthalpy of vaporization[KJ.mol**-1]\n", "#Calculation\n", "\n", "a=R*0.001*Tb**2*M1 \n", "b=Hvap \n", "Kb=a/b \t\t\t\t#Ebullioscopic constant of water[K.Kg.mol**-1]\n", "#Result\n", "print\"The Ebullioscopic constant of water is\",round(Kb,2),\"K.Kg.mol-1\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Ebullioscopic constant of water is 0.51 K.Kg.mol-1\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.20,Page no:176" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 6.20\n", "#To find the value of activity coefficient\n", "print\"CaF2(s)<=>CaF2(aq)<=>Ca+2(aq) + 2F-(aq)\"\n", "\n", "#Variable declaration\n", "Ksp=4.0*(10**-11) \t#Solubility product of sparingly soluble salt CaF2\n", "#Calculation\n", "\n", "x=Ksp/4.0 \n", "Cs=x**(1.0/3.0) \t\t#Solubility \n", "y=Cs**2 \n", "Y=(x/y)**(1.0/3.0) \t\t#activity coefficient\n", "#Result\n", "print\"The activity coefficient is\",Y \n", "print\"NOTE:please note that the value of Cs is wrongly calculated as 4.64*10^-11 in book\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "CaF2(s)<=>CaF2(aq)<=>Ca+2(aq) + 2F-(aq)\n", "The activity coefficient is 0.0599484250319\n", "NOTE:please note that the value of Cs is wrongly calculated as 4.64*10^-11 in book\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.21,Page no:177" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 6.21\n", "\n", "#To find the mean activity coefficient of ZnCl2 solution\n", "#Variable declaration\n", "R=8.314 \t\t\t#Universal gas constant[J/K/mol]\n", "T=298 \t\t\t\t#Temperature[K]\n", "F=96500 \t\t\t#Faraday's constant\n", "Eo=0.98 \t\t\t#Standard e.m.f of the cell[Volts]\n", "E=1.16 \t\t\t\t#e.m.f of the cell[Volts]\n", "m=0.01 \n", "import math\n", "#Calculation\n", "\n", "a=R*T \n", "b=2*F \n", "x=a/b \n", "Y=math.exp((Eo-E-(x*math.log(4*m*m*m)))/(3*x)) #mean activity coefficient\n", "#Result\n", "print\"The mean activity coefficient is\",round(Y,2) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mean activity coefficient is 0.59\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.22,Page no:184" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 6.22\n", "#To find the ionic strength in a solution\n", "#Variable declaration\n", "M1=0.01 \t\t\t#no. of moles of KCl\n", "M2=0.005 \t\t\t#no. of moles of MgCl2\n", "M3=0.002 \t\t\t#no. of moles of MgSO4\n", "M=0.1 \t\t\t\t#mass of water[Kg]\n", "z11=1 \n", "z12=1 \n", "z21=2 \n", "z22=1 \n", "z31=2 \n", "z32=2 \n", "#Calculation\n", "\t\n", "m1=M1/M \t\t\t#molality of KCL[m]\n", "m2=M2/M \t\t\t#molality of MgCl2[m]\n", "m3=M3/M \t\t\t#molality of MgSO4[m]\n", "\n", "I=0.5*((m1*z11**2+m1*z12**2+m2*z21**2+2*m2*z22**2+m3*z31**2+m3*z32**2)) #[mol/Kg]\n", "#Result\n", "print\"The Ionic strength of a solution is\",I,\"mol/Kg\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Ionic strength of a solution is 0.33 mol/Kg\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.23,Page no:185" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 6.23\n", "#To find the mean activity coefficient\n", "#Variable declaration\n", "T=298 \t\t\t\t#Temperature[K]\n", "P=1 \t\t\t\t#pressure [atm]\n", "m=0.02\t \t\t\t#Ionic strength of HCl solution in CH3OH[mol/Kg]\n", "E=32.6 \t\t\t\t#Di-electric constant\n", "d=0.787 \t\t\t#Density[gm/cm3]\n", "#Calculation\n", "\t\n", "I=0.5*(0.02*1*1+0.02*1*1) \t#Ionic strength of HCl solution[mol/Kg]\n", "a=I*d \n", "b=(E**3)*(298**3) \n", "x=(a/b)**0.5 \n", "Y=10**(-1.825*1000000*1*1*x) \t#mean activity coefficient\n", "#Result\n", "print\"The mean activity coefficient is\",round(Y,2) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mean activity coefficient is 0.58\n" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }